Spaces:
baselqt
/
No application file

LB5's picture
Upload 45 files
e6a22e6
raw
history blame
7.09 kB
import cv2
import numpy as np
import torch
from skimage import transform as skt
from typing import Iterable, Tuple
src1 = np.array(
[
[51.642, 50.115],
[57.617, 49.990],
[35.740, 69.007],
[51.157, 89.050],
[57.025, 89.702],
],
dtype=np.float32,
)
# <--left
src2 = np.array(
[
[45.031, 50.118],
[65.568, 50.872],
[39.677, 68.111],
[45.177, 86.190],
[64.246, 86.758],
],
dtype=np.float32,
)
# ---frontal
src3 = np.array(
[
[39.730, 51.138],
[72.270, 51.138],
[56.000, 68.493],
[42.463, 87.010],
[69.537, 87.010],
],
dtype=np.float32,
)
# -->right
src4 = np.array(
[
[46.845, 50.872],
[67.382, 50.118],
[72.737, 68.111],
[48.167, 86.758],
[67.236, 86.190],
],
dtype=np.float32,
)
# -->right profile
src5 = np.array(
[
[54.796, 49.990],
[60.771, 50.115],
[76.673, 69.007],
[55.388, 89.702],
[61.257, 89.050],
],
dtype=np.float32,
)
src = np.array([src1, src2, src3, src4, src5])
src_map = src
ffhq_src = np.array(
[
[192.98138, 239.94708],
[318.90277, 240.1936],
[256.63416, 314.01935],
[201.26117, 371.41043],
[313.08905, 371.15118],
]
)
ffhq_src = np.expand_dims(ffhq_src, axis=0)
# arcface_src = np.array(
# [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
# [41.5493, 92.3655], [70.7299, 92.2041]],
# dtype=np.float32)
# arcface_src = np.expand_dims(arcface_src, axis=0)
# In[66]:
# lmk is prediction; src is template
def estimate_norm(lmk, image_size=112, mode="ffhq"):
assert lmk.shape == (5, 2)
tform = skt.SimilarityTransform()
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
min_M = []
min_index = []
min_error = float("inf")
if mode == "ffhq":
# assert image_size == 112
src = ffhq_src * image_size / 512
else:
src = src_map * image_size / 112
for i in np.arange(src.shape[0]):
tform.estimate(lmk, src[i])
M = tform.params[0:2, :]
results = np.dot(M, lmk_tran.T)
results = results.T
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1)))
if error < min_error:
min_error = error
min_M = M
min_index = i
return min_M, min_index
def norm_crop(img, landmark, image_size=112, mode="ffhq"):
if mode == "Both":
M_None, _ = estimate_norm(landmark, image_size, mode="newarc")
M_ffhq, _ = estimate_norm(landmark, image_size, mode="ffhq")
warped_None = cv2.warpAffine(
img, M_None, (image_size, image_size), borderValue=0.0
)
warped_ffhq = cv2.warpAffine(
img, M_ffhq, (image_size, image_size), borderValue=0.0
)
return warped_ffhq, warped_None
else:
M, pose_index = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
return warped
def square_crop(im, S):
if im.shape[0] > im.shape[1]:
height = S
width = int(float(im.shape[1]) / im.shape[0] * S)
scale = float(S) / im.shape[0]
else:
width = S
height = int(float(im.shape[0]) / im.shape[1] * S)
scale = float(S) / im.shape[1]
resized_im = cv2.resize(im, (width, height))
det_im = np.zeros((S, S, 3), dtype=np.uint8)
det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im
return det_im, scale
def transform(data, center, output_size, scale, rotation):
scale_ratio = scale
rot = float(rotation) * np.pi / 180.0
# translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
t1 = skt.SimilarityTransform(scale=scale_ratio)
cx = center[0] * scale_ratio
cy = center[1] * scale_ratio
t2 = skt.SimilarityTransform(translation=(-1 * cx, -1 * cy))
t3 = skt.SimilarityTransform(rotation=rot)
t4 = skt.SimilarityTransform(translation=(output_size / 2, output_size / 2))
t = t1 + t2 + t3 + t4
M = t.params[0:2]
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0)
return cropped, M
def trans_points2d(pts, M):
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
new_pt = np.dot(M, new_pt)
# print('new_pt', new_pt.shape, new_pt)
new_pts[i] = new_pt[0:2]
return new_pts
def trans_points3d(pts, M):
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
# print(scale)
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
new_pt = np.dot(M, new_pt)
# print('new_pt', new_pt.shape, new_pt)
new_pts[i][0:2] = new_pt[0:2]
new_pts[i][2] = pts[i][2] * scale
return new_pts
def trans_points(pts, M):
if pts.shape[1] == 2:
return trans_points2d(pts, M)
else:
return trans_points3d(pts, M)
def inverse_transform(mat: np.ndarray) -> np.ndarray:
# inverse the Affine transformation matrix
inv_mat = np.zeros([2, 3])
div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]
inv_mat[0][0] = mat[1][1] / div1
inv_mat[0][1] = -mat[0][1] / div1
inv_mat[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1
div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1]
inv_mat[1][0] = mat[1][0] / div2
inv_mat[1][1] = -mat[0][0] / div2
inv_mat[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2
return inv_mat
def inverse_transform_batch(mat: torch.Tensor) -> torch.Tensor:
# inverse the Affine transformation matrix
inv_mat = torch.zeros_like(mat)
div1 = mat[:, 0, 0] * mat[:, 1, 1] - mat[:, 0, 1] * mat[:, 1, 0]
inv_mat[:, 0, 0] = mat[:, 1, 1] / div1
inv_mat[:, 0, 1] = -mat[:, 0, 1] / div1
inv_mat[:, 0, 2] = (
-(mat[:, 0, 2] * mat[:, 1, 1] - mat[:, 0, 1] * mat[:, 1, 2]) / div1
)
div2 = mat[:, 0, 1] * mat[:, 1, 0] - mat[:, 0, 0] * mat[:, 1, 1]
inv_mat[:, 1, 0] = mat[:, 1, 0] / div2
inv_mat[:, 1, 1] = -mat[:, 0, 0] / div2
inv_mat[:, 1, 2] = (
-(mat[:, 0, 2] * mat[:, 1, 0] - mat[:, 0, 0] * mat[:, 1, 2]) / div2
)
return inv_mat
def align_face(
img: np.ndarray, key_points: np.ndarray, crop_size: int, mode: str = "ffhq"
) -> Tuple[Iterable[np.ndarray], Iterable[np.ndarray]]:
align_imgs = []
transforms = []
for i in range(key_points.shape[0]):
kps = key_points[i]
transform_matrix, _ = estimate_norm(kps, crop_size, mode=mode)
align_img = cv2.warpAffine(
img, transform_matrix, (crop_size, crop_size), borderValue=0.0
)
align_imgs.append(align_img)
transforms.append(transform_matrix)
return align_imgs, transforms