|
import cv2 |
|
import numpy as np |
|
import torch |
|
from skimage import transform as skt |
|
from typing import Iterable, Tuple |
|
|
|
src1 = np.array( |
|
[ |
|
[51.642, 50.115], |
|
[57.617, 49.990], |
|
[35.740, 69.007], |
|
[51.157, 89.050], |
|
[57.025, 89.702], |
|
], |
|
dtype=np.float32, |
|
) |
|
|
|
src2 = np.array( |
|
[ |
|
[45.031, 50.118], |
|
[65.568, 50.872], |
|
[39.677, 68.111], |
|
[45.177, 86.190], |
|
[64.246, 86.758], |
|
], |
|
dtype=np.float32, |
|
) |
|
|
|
|
|
src3 = np.array( |
|
[ |
|
[39.730, 51.138], |
|
[72.270, 51.138], |
|
[56.000, 68.493], |
|
[42.463, 87.010], |
|
[69.537, 87.010], |
|
], |
|
dtype=np.float32, |
|
) |
|
|
|
|
|
src4 = np.array( |
|
[ |
|
[46.845, 50.872], |
|
[67.382, 50.118], |
|
[72.737, 68.111], |
|
[48.167, 86.758], |
|
[67.236, 86.190], |
|
], |
|
dtype=np.float32, |
|
) |
|
|
|
|
|
src5 = np.array( |
|
[ |
|
[54.796, 49.990], |
|
[60.771, 50.115], |
|
[76.673, 69.007], |
|
[55.388, 89.702], |
|
[61.257, 89.050], |
|
], |
|
dtype=np.float32, |
|
) |
|
|
|
src = np.array([src1, src2, src3, src4, src5]) |
|
src_map = src |
|
|
|
ffhq_src = np.array( |
|
[ |
|
[192.98138, 239.94708], |
|
[318.90277, 240.1936], |
|
[256.63416, 314.01935], |
|
[201.26117, 371.41043], |
|
[313.08905, 371.15118], |
|
] |
|
) |
|
ffhq_src = np.expand_dims(ffhq_src, axis=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def estimate_norm(lmk, image_size=112, mode="ffhq"): |
|
assert lmk.shape == (5, 2) |
|
tform = skt.SimilarityTransform() |
|
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) |
|
min_M = [] |
|
min_index = [] |
|
min_error = float("inf") |
|
if mode == "ffhq": |
|
|
|
src = ffhq_src * image_size / 512 |
|
else: |
|
src = src_map * image_size / 112 |
|
for i in np.arange(src.shape[0]): |
|
tform.estimate(lmk, src[i]) |
|
M = tform.params[0:2, :] |
|
results = np.dot(M, lmk_tran.T) |
|
results = results.T |
|
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1))) |
|
if error < min_error: |
|
min_error = error |
|
min_M = M |
|
min_index = i |
|
return min_M, min_index |
|
|
|
|
|
def norm_crop(img, landmark, image_size=112, mode="ffhq"): |
|
if mode == "Both": |
|
M_None, _ = estimate_norm(landmark, image_size, mode="newarc") |
|
M_ffhq, _ = estimate_norm(landmark, image_size, mode="ffhq") |
|
warped_None = cv2.warpAffine( |
|
img, M_None, (image_size, image_size), borderValue=0.0 |
|
) |
|
warped_ffhq = cv2.warpAffine( |
|
img, M_ffhq, (image_size, image_size), borderValue=0.0 |
|
) |
|
return warped_ffhq, warped_None |
|
else: |
|
M, pose_index = estimate_norm(landmark, image_size, mode) |
|
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) |
|
return warped |
|
|
|
|
|
def square_crop(im, S): |
|
if im.shape[0] > im.shape[1]: |
|
height = S |
|
width = int(float(im.shape[1]) / im.shape[0] * S) |
|
scale = float(S) / im.shape[0] |
|
else: |
|
width = S |
|
height = int(float(im.shape[0]) / im.shape[1] * S) |
|
scale = float(S) / im.shape[1] |
|
resized_im = cv2.resize(im, (width, height)) |
|
det_im = np.zeros((S, S, 3), dtype=np.uint8) |
|
det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im |
|
return det_im, scale |
|
|
|
|
|
def transform(data, center, output_size, scale, rotation): |
|
scale_ratio = scale |
|
rot = float(rotation) * np.pi / 180.0 |
|
|
|
t1 = skt.SimilarityTransform(scale=scale_ratio) |
|
cx = center[0] * scale_ratio |
|
cy = center[1] * scale_ratio |
|
t2 = skt.SimilarityTransform(translation=(-1 * cx, -1 * cy)) |
|
t3 = skt.SimilarityTransform(rotation=rot) |
|
t4 = skt.SimilarityTransform(translation=(output_size / 2, output_size / 2)) |
|
t = t1 + t2 + t3 + t4 |
|
M = t.params[0:2] |
|
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) |
|
return cropped, M |
|
|
|
|
|
def trans_points2d(pts, M): |
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) |
|
for i in range(pts.shape[0]): |
|
pt = pts[i] |
|
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) |
|
new_pt = np.dot(M, new_pt) |
|
|
|
new_pts[i] = new_pt[0:2] |
|
|
|
return new_pts |
|
|
|
|
|
def trans_points3d(pts, M): |
|
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) |
|
|
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) |
|
for i in range(pts.shape[0]): |
|
pt = pts[i] |
|
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) |
|
new_pt = np.dot(M, new_pt) |
|
|
|
new_pts[i][0:2] = new_pt[0:2] |
|
new_pts[i][2] = pts[i][2] * scale |
|
|
|
return new_pts |
|
|
|
|
|
def trans_points(pts, M): |
|
if pts.shape[1] == 2: |
|
return trans_points2d(pts, M) |
|
else: |
|
return trans_points3d(pts, M) |
|
|
|
|
|
def inverse_transform(mat: np.ndarray) -> np.ndarray: |
|
|
|
inv_mat = np.zeros([2, 3]) |
|
div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0] |
|
inv_mat[0][0] = mat[1][1] / div1 |
|
inv_mat[0][1] = -mat[0][1] / div1 |
|
inv_mat[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1 |
|
div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1] |
|
inv_mat[1][0] = mat[1][0] / div2 |
|
inv_mat[1][1] = -mat[0][0] / div2 |
|
inv_mat[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2 |
|
return inv_mat |
|
|
|
|
|
def inverse_transform_batch(mat: torch.Tensor) -> torch.Tensor: |
|
|
|
inv_mat = torch.zeros_like(mat) |
|
div1 = mat[:, 0, 0] * mat[:, 1, 1] - mat[:, 0, 1] * mat[:, 1, 0] |
|
inv_mat[:, 0, 0] = mat[:, 1, 1] / div1 |
|
inv_mat[:, 0, 1] = -mat[:, 0, 1] / div1 |
|
inv_mat[:, 0, 2] = ( |
|
-(mat[:, 0, 2] * mat[:, 1, 1] - mat[:, 0, 1] * mat[:, 1, 2]) / div1 |
|
) |
|
div2 = mat[:, 0, 1] * mat[:, 1, 0] - mat[:, 0, 0] * mat[:, 1, 1] |
|
inv_mat[:, 1, 0] = mat[:, 1, 0] / div2 |
|
inv_mat[:, 1, 1] = -mat[:, 0, 0] / div2 |
|
inv_mat[:, 1, 2] = ( |
|
-(mat[:, 0, 2] * mat[:, 1, 0] - mat[:, 0, 0] * mat[:, 1, 2]) / div2 |
|
) |
|
return inv_mat |
|
|
|
|
|
def align_face( |
|
img: np.ndarray, key_points: np.ndarray, crop_size: int, mode: str = "ffhq" |
|
) -> Tuple[Iterable[np.ndarray], Iterable[np.ndarray]]: |
|
align_imgs = [] |
|
transforms = [] |
|
for i in range(key_points.shape[0]): |
|
kps = key_points[i] |
|
transform_matrix, _ = estimate_norm(kps, crop_size, mode=mode) |
|
align_img = cv2.warpAffine( |
|
img, transform_matrix, (crop_size, crop_size), borderValue=0.0 |
|
) |
|
align_imgs.append(align_img) |
|
transforms.append(transform_matrix) |
|
|
|
return align_imgs, transforms |
|
|