|
""" |
|
Author: Naiyuan liu |
|
Github: https://github.com/NNNNAI |
|
Date: 2021-11-23 16:55:48 |
|
LastEditors: Naiyuan liu |
|
LastEditTime: 2021-11-24 16:58:06 |
|
Description: |
|
""" |
|
""" |
|
Copyright (C) 2019 NVIDIA Corporation. All rights reserved. |
|
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class InstanceNorm(nn.Module): |
|
def __init__(self, epsilon=1e-8): |
|
""" |
|
@notice: avoid in-place ops. |
|
https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 |
|
""" |
|
super(InstanceNorm, self).__init__() |
|
self.epsilon = epsilon |
|
|
|
def forward(self, x): |
|
x = x - torch.mean(x, (2, 3), True) |
|
tmp = torch.mul(x, x) |
|
tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon) |
|
return x * tmp |
|
|
|
|
|
class ApplyStyle(nn.Module): |
|
""" |
|
@ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb |
|
""" |
|
|
|
def __init__(self, latent_size, channels): |
|
super(ApplyStyle, self).__init__() |
|
self.linear = nn.Linear(latent_size, channels * 2) |
|
|
|
def forward(self, x, latent): |
|
style = self.linear(latent) |
|
shape = [-1, 2, x.size(1), 1, 1] |
|
style = style.view(shape) |
|
|
|
x = x * (style[:, 0] * 1 + 1.0) + style[:, 1] * 1 |
|
return x |
|
|
|
|
|
class ResnetBlock_Adain(nn.Module): |
|
def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)): |
|
super(ResnetBlock_Adain, self).__init__() |
|
|
|
p = 0 |
|
conv1 = [] |
|
if padding_type == "reflect": |
|
conv1 += [nn.ReflectionPad2d(1)] |
|
elif padding_type == "replicate": |
|
conv1 += [nn.ReplicationPad2d(1)] |
|
elif padding_type == "zero": |
|
p = 1 |
|
else: |
|
raise NotImplementedError("padding [%s] is not implemented" % padding_type) |
|
conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] |
|
self.conv1 = nn.Sequential(*conv1) |
|
self.style1 = ApplyStyle(latent_size, dim) |
|
self.act1 = activation |
|
|
|
p = 0 |
|
conv2 = [] |
|
if padding_type == "reflect": |
|
conv2 += [nn.ReflectionPad2d(1)] |
|
elif padding_type == "replicate": |
|
conv2 += [nn.ReplicationPad2d(1)] |
|
elif padding_type == "zero": |
|
p = 1 |
|
else: |
|
raise NotImplementedError("padding [%s] is not implemented" % padding_type) |
|
conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] |
|
self.conv2 = nn.Sequential(*conv2) |
|
self.style2 = ApplyStyle(latent_size, dim) |
|
|
|
def forward(self, x, dlatents_in_slice): |
|
y = self.conv1(x) |
|
y = self.style1(y, dlatents_in_slice) |
|
y = self.act1(y) |
|
y = self.conv2(y) |
|
y = self.style2(y, dlatents_in_slice) |
|
out = x + y |
|
return out |
|
|
|
|
|
class Generator_Adain_Upsample(nn.Module): |
|
def __init__( |
|
self, |
|
input_nc, |
|
output_nc, |
|
latent_size, |
|
n_blocks=6, |
|
deep=False, |
|
norm_layer=nn.BatchNorm2d, |
|
padding_type="reflect", |
|
): |
|
assert n_blocks >= 0 |
|
super(Generator_Adain_Upsample, self).__init__() |
|
activation = nn.ReLU(True) |
|
self.deep = deep |
|
|
|
self.first_layer = nn.Sequential( |
|
nn.ReflectionPad2d(3), |
|
nn.Conv2d(input_nc, 32, kernel_size=7, padding=0), |
|
norm_layer(32), |
|
activation, |
|
) |
|
|
|
self.down0 = nn.Sequential( |
|
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), |
|
norm_layer(64), |
|
activation, |
|
) |
|
self.down1 = nn.Sequential( |
|
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), |
|
norm_layer(128), |
|
activation, |
|
) |
|
self.down2 = nn.Sequential( |
|
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1), |
|
norm_layer(256), |
|
activation, |
|
) |
|
self.down3 = nn.Sequential( |
|
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1), |
|
norm_layer(512), |
|
activation, |
|
) |
|
if self.deep: |
|
self.down4 = nn.Sequential( |
|
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), |
|
norm_layer(512), |
|
activation, |
|
) |
|
|
|
|
|
BN = [] |
|
for i in range(n_blocks): |
|
BN += [ |
|
ResnetBlock_Adain( |
|
512, |
|
latent_size=latent_size, |
|
padding_type=padding_type, |
|
activation=activation, |
|
) |
|
] |
|
self.BottleNeck = nn.Sequential(*BN) |
|
|
|
if self.deep: |
|
self.up4 = nn.Sequential( |
|
nn.Upsample(scale_factor=2, mode="bilinear"), |
|
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(512), |
|
activation, |
|
) |
|
self.up3 = nn.Sequential( |
|
nn.Upsample(scale_factor=2, mode="bilinear"), |
|
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(256), |
|
activation, |
|
) |
|
self.up2 = nn.Sequential( |
|
nn.Upsample(scale_factor=2, mode="bilinear"), |
|
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(128), |
|
activation, |
|
) |
|
self.up1 = nn.Sequential( |
|
nn.Upsample(scale_factor=2, mode="bilinear"), |
|
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(64), |
|
activation, |
|
) |
|
self.up0 = nn.Sequential( |
|
nn.Upsample(scale_factor=2, mode="bilinear"), |
|
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(32), |
|
activation, |
|
) |
|
self.last_layer = nn.Sequential( |
|
nn.ReflectionPad2d(3), |
|
nn.Conv2d(32, output_nc, kernel_size=7, padding=0), |
|
nn.Tanh(), |
|
) |
|
|
|
def forward(self, input, dlatents): |
|
x = input |
|
|
|
skip0 = self.first_layer(x) |
|
skip1 = self.down0(skip0) |
|
skip2 = self.down1(skip1) |
|
skip3 = self.down2(skip2) |
|
if self.deep: |
|
skip4 = self.down3(skip3) |
|
x = self.down4(skip4) |
|
else: |
|
x = self.down3(skip3) |
|
|
|
for i in range(len(self.BottleNeck)): |
|
x = self.BottleNeck[i](x, dlatents) |
|
|
|
if self.deep: |
|
x = self.up4(x) |
|
x = self.up3(x) |
|
x = self.up2(x) |
|
x = self.up1(x) |
|
x = self.up0(x) |
|
x = self.last_layer(x) |
|
x = (x + 1) / 2 |
|
|
|
return x |
|
|
|
|
|
class Discriminator(nn.Module): |
|
def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, use_sigmoid=False): |
|
super(Discriminator, self).__init__() |
|
|
|
kw = 4 |
|
padw = 1 |
|
self.down1 = nn.Sequential( |
|
nn.Conv2d(input_nc, 64, kernel_size=kw, stride=2, padding=padw), |
|
nn.LeakyReLU(0.2, True), |
|
) |
|
self.down2 = nn.Sequential( |
|
nn.Conv2d(64, 128, kernel_size=kw, stride=2, padding=padw), |
|
norm_layer(128), |
|
nn.LeakyReLU(0.2, True), |
|
) |
|
self.down3 = nn.Sequential( |
|
nn.Conv2d(128, 256, kernel_size=kw, stride=2, padding=padw), |
|
norm_layer(256), |
|
nn.LeakyReLU(0.2, True), |
|
) |
|
self.down4 = nn.Sequential( |
|
nn.Conv2d(256, 512, kernel_size=kw, stride=2, padding=padw), |
|
norm_layer(512), |
|
nn.LeakyReLU(0.2, True), |
|
) |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(512, 512, kernel_size=kw, stride=1, padding=padw), |
|
norm_layer(512), |
|
nn.LeakyReLU(0.2, True), |
|
) |
|
|
|
if use_sigmoid: |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(512, 1, kernel_size=kw, stride=1, padding=padw), nn.Sigmoid() |
|
) |
|
else: |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(512, 1, kernel_size=kw, stride=1, padding=padw) |
|
) |
|
|
|
def forward(self, input): |
|
out = [] |
|
x = self.down1(input) |
|
out.append(x) |
|
x = self.down2(x) |
|
out.append(x) |
|
x = self.down3(x) |
|
out.append(x) |
|
x = self.down4(x) |
|
out.append(x) |
|
x = self.conv1(x) |
|
out.append(x) |
|
x = self.conv2(x) |
|
out.append(x) |
|
|
|
return out |
|
|