""" Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). """ import torch import torch.nn as nn from torchvision import transforms from typing import Iterable import numpy as np class InstanceNorm(nn.Module): def __init__(self, epsilon=1e-8): """ @notice: avoid in-place ops. https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 """ super(InstanceNorm, self).__init__() self.epsilon = epsilon def forward(self, x): x = x - torch.mean(x, (2, 3), True) tmp = torch.mul(x, x) # or x ** 2 tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon) return x * tmp class ApplyStyle(nn.Module): """ @ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb """ def __init__(self, latent_size, channels): super(ApplyStyle, self).__init__() self.linear = nn.Linear(latent_size, channels * 2) def forward(self, x, latent): style = self.linear(latent) # style => [batch_size, n_channels*2] shape = [-1, 2, x.size(1), 1, 1] style = style.view(shape) # [batch_size, 2, n_channels, ...] # x = x * (style[:, 0] + 1.) + style[:, 1] x = x * (style[:, 0] * 1 + 1.0) + style[:, 1] * 1 return x class ResnetBlock_Adain(nn.Module): def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)): super(ResnetBlock_Adain, self).__init__() p = 0 conv1 = [] if padding_type == "reflect": conv1 += [nn.ReflectionPad2d(1)] elif padding_type == "replicate": conv1 += [nn.ReplicationPad2d(1)] elif padding_type == "zero": p = 1 else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] self.conv1 = nn.Sequential(*conv1) self.style1 = ApplyStyle(latent_size, dim) self.act1 = activation p = 0 conv2 = [] if padding_type == "reflect": conv2 += [nn.ReflectionPad2d(1)] elif padding_type == "replicate": conv2 += [nn.ReplicationPad2d(1)] elif padding_type == "zero": p = 1 else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] self.conv2 = nn.Sequential(*conv2) self.style2 = ApplyStyle(latent_size, dim) def forward(self, x, dlatents_in_slice): y = self.conv1(x) y = self.style1(y, dlatents_in_slice) y = self.act1(y) y = self.conv2(y) y = self.style2(y, dlatents_in_slice) out = x + y return out class Generator_Adain_Upsample(nn.Module): def __init__( self, input_nc: int, output_nc: int, latent_size: int, n_blocks: int = 6, deep: bool = False, use_last_act: bool = True, norm_layer: torch.nn.Module = nn.BatchNorm2d, padding_type: str = "reflect", ): assert n_blocks >= 0 super(Generator_Adain_Upsample, self).__init__() activation = nn.ReLU(True) self.deep = deep self.use_last_act = use_last_act self.to_tensor_normalize = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) self.to_tensor = transforms.Compose([transforms.ToTensor()]) self.imagenet_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) self.imagenet_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) self.first_layer = nn.Sequential( nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, kernel_size=7, padding=0), norm_layer(64), activation, ) # downsample self.down1 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), norm_layer(128), activation, ) self.down2 = nn.Sequential( nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1), norm_layer(256), activation, ) self.down3 = nn.Sequential( nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1), norm_layer(512), activation, ) if self.deep: self.down4 = nn.Sequential( nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), norm_layer(512), activation, ) # resnet blocks BN = [] for i in range(n_blocks): BN += [ ResnetBlock_Adain( 512, latent_size=latent_size, padding_type=padding_type, activation=activation, ) ] self.BottleNeck = nn.Sequential(*BN) if self.deep: self.up4 = nn.Sequential( nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(512), activation, ) self.up3 = nn.Sequential( nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False), nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(256), activation, ) self.up2 = nn.Sequential( nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False), nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(128), activation, ) self.up1 = nn.Sequential( nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False), nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64), activation, ) if self.use_last_act: self.last_layer = nn.Sequential( nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, kernel_size=7, padding=0), torch.nn.Tanh(), ) else: self.last_layer = nn.Sequential( nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, kernel_size=7, padding=0), ) def to(self, device): super().to(device) self.device = device self.imagenet_mean = self.imagenet_mean.to(device) self.imagenet_std = self.imagenet_std.to(device) return self def forward(self, x: Iterable[np.ndarray], dlatents: torch.Tensor): if self.use_last_act: x = [self.to_tensor(_) for _ in x] else: x = [self.to_tensor_normalize(_) for _ in x] x = torch.stack(x, dim=0) x = x.to(self.device) skip1 = self.first_layer(x) skip2 = self.down1(skip1) skip3 = self.down2(skip2) if self.deep: skip4 = self.down3(skip3) x = self.down4(skip4) else: x = self.down3(skip3) for i in range(len(self.BottleNeck)): x = self.BottleNeck[i](x, dlatents) if self.deep: x = self.up4(x) x = self.up3(x) x = self.up2(x) x = self.up1(x) x = self.last_layer(x) if self.use_last_act: x = (x + 1) / 2 else: x = x * self.imagenet_std + self.imagenet_mean return x