from typing import Any, List, Callable import cv2 import numpy as np import onnxruntime import roop.globals from roop.typing import Face, Frame, FaceSet from roop.utilities import resolve_relative_path # THREAD_LOCK = threading.Lock() class Enhance_GFPGAN(): plugin_options:dict = None model_gfpgan = None name = None devicename = None processorname = 'gfpgan' type = 'enhance' def Initialize(self, plugin_options:dict): if self.plugin_options is not None: if self.plugin_options["devicename"] != plugin_options["devicename"]: self.Release() self.plugin_options = plugin_options if self.model_gfpgan is None: model_path = resolve_relative_path('../models/GFPGANv1.4.onnx') self.model_gfpgan = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers) # replace Mac mps with cpu for the moment self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu') self.name = self.model_gfpgan.get_inputs()[0].name def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame: # preprocess input_size = temp_frame.shape[1] temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC) temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) temp_frame = temp_frame.astype('float32') / 255.0 temp_frame = (temp_frame - 0.5) / 0.5 temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2) io_binding = self.model_gfpgan.io_binding() io_binding.bind_cpu_input("input", temp_frame) io_binding.bind_output("1288", self.devicename) self.model_gfpgan.run_with_iobinding(io_binding) ort_outs = io_binding.copy_outputs_to_cpu() result = ort_outs[0][0] # post-process result = np.clip(result, -1, 1) result = (result + 1) / 2 result = result.transpose(1, 2, 0) * 255.0 result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR) scale_factor = int(result.shape[1] / input_size) return result.astype(np.uint8), scale_factor def Release(self): self.model_gfpgan = None