import cv2 import numpy as np import torch import threading from torchvision import transforms from clip.clipseg import CLIPDensePredT import numpy as np from roop.typing import Frame THREAD_LOCK_CLIP = threading.Lock() class Mask_Clip2Seg(): plugin_options:dict = None model_clip = None processorname = 'clip2seg' type = 'mask' def Initialize(self, plugin_options:dict): if self.plugin_options is not None: if self.plugin_options["devicename"] != plugin_options["devicename"]: self.Release() self.plugin_options = plugin_options if self.model_clip is None: self.model_clip = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True) self.model_clip.eval(); self.model_clip.load_state_dict(torch.load('models/CLIP/rd64-uni-refined.pth', map_location=torch.device('cpu')), strict=False) device = torch.device(self.plugin_options["devicename"]) self.model_clip.to(device) def Run(self, img1, keywords:str) -> Frame: if keywords is None or len(keywords) < 1 or img1 is None: return img1 source_image_small = cv2.resize(img1, (256,256)) img_mask = np.full((source_image_small.shape[0],source_image_small.shape[1]), 0, dtype=np.float32) mask_border = 1 l = 0 t = 0 r = 1 b = 1 mask_blur = 5 clip_blur = 5 img_mask = cv2.rectangle(img_mask, (mask_border+int(l), mask_border+int(t)), (256 - mask_border-int(r), 256-mask_border-int(b)), (255, 255, 255), -1) img_mask = cv2.GaussianBlur(img_mask, (mask_blur*2+1,mask_blur*2+1), 0) img_mask /= 255 input_image = source_image_small transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.Resize((256, 256)), ]) img = transform(input_image).unsqueeze(0) thresh = 0.5 prompts = keywords.split(',') with THREAD_LOCK_CLIP: with torch.no_grad(): preds = self.model_clip(img.repeat(len(prompts),1,1,1), prompts)[0] clip_mask = torch.sigmoid(preds[0][0]) for i in range(len(prompts)-1): clip_mask += torch.sigmoid(preds[i+1][0]) clip_mask = clip_mask.data.cpu().numpy() np.clip(clip_mask, 0, 1) clip_mask[clip_mask>thresh] = 1.0 clip_mask[clip_mask<=thresh] = 0.0 kernel = np.ones((5, 5), np.float32) clip_mask = cv2.dilate(clip_mask, kernel, iterations=1) clip_mask = cv2.GaussianBlur(clip_mask, (clip_blur*2+1,clip_blur*2+1), 0) img_mask *= clip_mask img_mask[img_mask<0.0] = 0.0 return img_mask def Release(self): self.model_clip = None