Spaces:
Sleeping
Sleeping
Commit
·
b98188b
1
Parent(s):
0645da3
Add application and model
Browse files- app.py +69 -0
- generator_final.pth +3 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
latent_dim = 100
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
class Generator(nn.Module):
|
11 |
+
def __init__(self, latent_dim=100, img_channels=3, feature_map_size=32):
|
12 |
+
super(Generator, self).__init__()
|
13 |
+
self.net = nn.Sequential(
|
14 |
+
nn.ConvTranspose2d(latent_dim, feature_map_size * 8, 4, 1, 0, bias=False),
|
15 |
+
nn.BatchNorm2d(feature_map_size * 8),
|
16 |
+
nn.ReLU(True),
|
17 |
+
nn.ConvTranspose2d(feature_map_size * 8, feature_map_size * 4, 4, 2, 1, bias=False),
|
18 |
+
nn.BatchNorm2d(feature_map_size * 4),
|
19 |
+
nn.ReLU(True),
|
20 |
+
nn.ConvTranspose2d(feature_map_size * 4, feature_map_size * 2, 4, 2, 1, bias=False),
|
21 |
+
nn.BatchNorm2d(feature_map_size * 2),
|
22 |
+
nn.ReLU(True),
|
23 |
+
nn.ConvTranspose2d(feature_map_size * 2, feature_map_size, 4, 2, 1, bias=False),
|
24 |
+
nn.BatchNorm2d(feature_map_size),
|
25 |
+
nn.ReLU(True),
|
26 |
+
nn.ConvTranspose2d(feature_map_size, img_channels, 4, 2, 1, bias=False),
|
27 |
+
nn.Tanh()
|
28 |
+
)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
return self.net(x)
|
32 |
+
|
33 |
+
def generate_artwork(generator, latent_dim=latent_dim, device=device, num_images=1):
|
34 |
+
generator.eval()
|
35 |
+
with torch.no_grad():
|
36 |
+
noise = torch.randn(num_images, latent_dim, 1, 1, device=device)
|
37 |
+
fake_images = generator(noise)
|
38 |
+
fake_images = fake_images * 0.5 + 0.5
|
39 |
+
return fake_images.detach().cpu()
|
40 |
+
|
41 |
+
def inference_interface(latent_dim=latent_dim, device=device):
|
42 |
+
# Create model and load weights
|
43 |
+
generator = Generator(latent_dim=latent_dim)
|
44 |
+
generator = nn.DataParallel(generator)
|
45 |
+
generator.load_state_dict(torch.load("generator_final.pth", map_location=device))
|
46 |
+
|
47 |
+
if isinstance(generator, nn.DataParallel):
|
48 |
+
generator = generator.module
|
49 |
+
generator.to(device)
|
50 |
+
|
51 |
+
def generate(num_images):
|
52 |
+
fake_images = generate_artwork(generator, latent_dim=latent_dim, device=device, num_images=num_images)
|
53 |
+
images = [transforms.ToPILImage()(img) for img in fake_images]
|
54 |
+
upscaled_images = [img.resize((256, 256), resample=Image.LANCZOS) for img in images]
|
55 |
+
return upscaled_images
|
56 |
+
|
57 |
+
demo = gr.Interface(
|
58 |
+
fn=generate,
|
59 |
+
inputs=gr.Slider(minimum=1, maximum=9, step=1, default=1, label="Number of Images"),
|
60 |
+
outputs=gr.Gallery(label="Generated Artwork").style(grid=[3], height="auto"),
|
61 |
+
title="Art Generation with GAN",
|
62 |
+
description="Generate artwork using a trained GAN model."
|
63 |
+
)
|
64 |
+
return demo
|
65 |
+
|
66 |
+
# The key part: launch the Gradio interface when app.py is run
|
67 |
+
if __name__ == "__main__":
|
68 |
+
demo = inference_interface()
|
69 |
+
demo.launch()
|
generator_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dc949f7130cc293d5c6a2b37b2a838aa82cc5848bbea014596b768829271b63
|
3 |
+
size 4413491
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
gradio
|
4 |
+
Pillow
|