from PIL import Image import torchvision.transforms as transforms import gradio as gr import torch import torch.nn as nn latent_dim = 100 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class Generator(nn.Module): def __init__(self, latent_dim=100, img_channels=3, feature_map_size=32): super(Generator, self).__init__() self.net = nn.Sequential( nn.ConvTranspose2d(latent_dim, feature_map_size * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(feature_map_size * 8), nn.ReLU(True), nn.ConvTranspose2d(feature_map_size * 8, feature_map_size * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(feature_map_size * 4), nn.ReLU(True), nn.ConvTranspose2d(feature_map_size * 4, feature_map_size * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(feature_map_size * 2), nn.ReLU(True), nn.ConvTranspose2d(feature_map_size * 2, feature_map_size, 4, 2, 1, bias=False), nn.BatchNorm2d(feature_map_size), nn.ReLU(True), nn.ConvTranspose2d(feature_map_size, img_channels, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, x): return self.net(x) def generate_artwork(generator, latent_dim=latent_dim, device=device, num_images=1): generator.eval() with torch.no_grad(): noise = torch.randn(num_images, latent_dim, 1, 1, device=device) fake_images = generator(noise) fake_images = fake_images * 0.5 + 0.5 return fake_images.detach().cpu() def inference_interface(latent_dim=latent_dim, device=device): # Create model and load weights generator = Generator(latent_dim=latent_dim) generator = nn.DataParallel(generator) generator.load_state_dict(torch.load("generator_final.pth", map_location=device)) if isinstance(generator, nn.DataParallel): generator = generator.module generator.to(device) def generate(num_images): fake_images = generate_artwork(generator, latent_dim=latent_dim, device=device, num_images=num_images) images = [transforms.ToPILImage()(img) for img in fake_images] upscaled_images = [img.resize((256, 256), resample=Image.LANCZOS) for img in images] return upscaled_images demo = gr.Interface(fn=generate, inputs=gr.Slider(minimum=1, maximum=9, step=1, value=1, label="Number of Images"), outputs=gr.Gallery(label="Generated Artwork", columns=3, height="auto"), title="This Artwork Doesn’t Exist", description="Generate artwork using our Wiki_ArtGAN." ) return demo # The key part: launch the Gradio interface when app.py is run if __name__ == "__main__": demo = inference_interface() demo.launch()