File size: 13,375 Bytes
8bb8404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import argparse, os, sys
import numpy as np
import time
import torch
import torch.nn as nn
import torchvision
import pytorch_lightning as pl

from omegaconf import OmegaConf
from PIL import Image

from pytorch_lightning import seed_everything
from pytorch_lightning.strategies import DDPStrategy
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only

from ldm.util import instantiate_from_config


@rank_zero_only
def rank_zero_print(*args):
    print(*args)

def get_parser(**parser_kwargs):
    def str2bool(v):
        if isinstance(v, bool):
            return v
        if v.lower() in ("yes", "true", "t", "y", "1"):
            return True
        elif v.lower() in ("no", "false", "f", "n", "0"):
            return False
        else:
            raise argparse.ArgumentTypeError("Boolean value expected.")

    parser = argparse.ArgumentParser(**parser_kwargs)
    parser.add_argument("-r", "--resume", dest='resume', action='store_true', default=False)
    parser.add_argument("-b", "--base", type=str, default='configs/syncdreamer-training.yaml',)
    parser.add_argument("-l", "--logdir", type=str, default="ckpt/logs", help="directory for logging data", )
    parser.add_argument("-c", "--ckptdir", type=str, default="ckpt/models", help="directory for checkpoint data", )
    parser.add_argument("-s", "--seed", type=int, default=6033, help="seed for seed_everything", )
    parser.add_argument("--finetune_from", type=str, default="/cfs-cq-dcc/rondyliu/models/sd-image-conditioned-v2.ckpt", help="path to checkpoint to load model state from" )
    parser.add_argument("--gpus", type=str, default='0,')
    return parser

def trainer_args(opt):
    parser = argparse.ArgumentParser()
    parser = Trainer.add_argparse_args(parser)
    args = parser.parse_args([])
    return sorted(k for k in vars(args) if hasattr(opt, k))

class SetupCallback(Callback):
    def __init__(self, resume, logdir, ckptdir, cfgdir, config):
        super().__init__()
        self.resume = resume
        self.logdir = logdir
        self.ckptdir = ckptdir
        self.cfgdir = cfgdir
        self.config = config

    def on_fit_start(self, trainer, pl_module):
        if trainer.global_rank == 0:
            # Create logdirs and save configs
            os.makedirs(self.logdir, exist_ok=True)
            os.makedirs(self.ckptdir, exist_ok=True)
            os.makedirs(self.cfgdir, exist_ok=True)

            rank_zero_print(OmegaConf.to_yaml(self.config))
            OmegaConf.save(self.config, os.path.join(self.cfgdir, "configs.yaml"))

            if not self.resume and os.path.exists(os.path.join(self.logdir,'checkpoints','last.ckpt')):
                raise RuntimeError(f"checkpoint {os.path.join(self.logdir,'checkpoints','last.ckpt')} existing")

class ImageLogger(Callback):
    def __init__(self, batch_frequency, max_images, log_images_kwargs=None):
        super().__init__()
        self.batch_freq = batch_frequency
        self.max_images = max_images
        self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}

    @rank_zero_only
    def log_to_logger(self, pl_module, images, split):
        for k in images:
            grid = torchvision.utils.make_grid(images[k])
            grid = (grid + 1.0) / 2.0  # -1,1 -> 0,1; c,h,w

            tag = f"{split}/{k}"
            pl_module.logger.experiment.add_image(tag, grid, global_step=pl_module.global_step)

    @rank_zero_only
    def log_to_file(self, save_dir, split, images, global_step, current_epoch):
        root = os.path.join(save_dir, "images", split)
        for k in images:
            grid = torchvision.utils.make_grid(images[k], nrow=4)
            grid = (grid + 1.0) / 2.0  # -1,1 -> 0,1; c,h,w
            grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
            grid = grid.numpy()
            grid = (grid * 255).astype(np.uint8)
            filename = "{:06}-{:06}-{}.jpg".format(global_step, current_epoch, k)
            path = os.path.join(root, filename)
            os.makedirs(os.path.split(path)[0], exist_ok=True)
            Image.fromarray(grid).save(path)

    @rank_zero_only
    def log_img(self, pl_module, batch, split="train"):
        if split == "val": should_log = True
        else: should_log = self.check_frequency(pl_module.global_step)

        if should_log:
            is_train = pl_module.training
            if is_train: pl_module.eval()

            with torch.no_grad():
                images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)

            for k in images:
                N = min(images[k].shape[0], self.max_images)
                images[k] = images[k][:N]
                if isinstance(images[k], torch.Tensor):
                    images[k] = images[k].detach().cpu()
                    images[k] = torch.clamp(images[k], -1., 1.)

            self.log_to_file(pl_module.logger.save_dir, split, images, pl_module.global_step, pl_module.current_epoch)
            # self.log_to_logger(pl_module, images, split)

            if is_train: pl_module.train()

    def check_frequency(self, check_idx):
        if (check_idx % self.batch_freq) == 0 and check_idx > 0:
            return True
        else:
            return False

    def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        self.log_img(pl_module, batch, split="train")

    @rank_zero_only
    def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=0):
        # print('validation ....')
        # print(dataloader_idx)
        # print(batch_idx)
        if batch_idx==0: self.log_img(pl_module, batch, split="val")

class CUDACallback(Callback):
    # see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
    def on_train_epoch_start(self, trainer, pl_module):
        # Reset the memory use counter
        torch.cuda.reset_peak_memory_stats(trainer.strategy.root_device.index)
        torch.cuda.synchronize(trainer.strategy.root_device.index)
        self.start_time = time.time()

    def on_train_epoch_end(self, trainer, pl_module):
        torch.cuda.synchronize(trainer.strategy.root_device.index)
        max_memory = torch.cuda.max_memory_allocated(trainer.strategy.root_device.index) / 2 ** 20
        epoch_time = time.time() - self.start_time

        try:
            max_memory = trainer.strategy.reduce(max_memory)
            epoch_time = trainer.strategy.reduce(epoch_time)

            rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
            rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
        except AttributeError:
            pass

def get_node_name(name, parent_name):
    if len(name) <= len(parent_name):
        return False, ''
    p = name[:len(parent_name)]
    if p != parent_name:
        return False, ''
    return True, name[len(parent_name):]

class ResumeCallBacks(Callback):
    def on_train_start(self, trainer, pl_module):
        pl_module.optimizers().param_groups = pl_module.optimizers()._optimizer.param_groups

def load_pretrain_stable_diffusion(new_model, finetune_from):
    rank_zero_print(f"Attempting to load state from {finetune_from}")
    old_state = torch.load(finetune_from, map_location="cpu")
    if "state_dict" in old_state: old_state = old_state["state_dict"]

    in_filters_load = old_state["model.diffusion_model.input_blocks.0.0.weight"]
    new_state = new_model.state_dict()
    if "model.diffusion_model.input_blocks.0.0.weight" in new_state:
        in_filters_current = new_state["model.diffusion_model.input_blocks.0.0.weight"]
        in_shape = in_filters_current.shape
        ## because the model adopts additional inputs as conditions.
        if in_shape != in_filters_load.shape:
            input_keys = ["model.diffusion_model.input_blocks.0.0.weight", "model_ema.diffusion_modelinput_blocks00weight",]
            for input_key in input_keys:
                if input_key not in old_state or input_key not in new_state:
                    continue
                input_weight = new_state[input_key]
                if input_weight.size() != old_state[input_key].size():
                    print(f"Manual init: {input_key}")
                    input_weight.zero_()
                    input_weight[:, :4, :, :].copy_(old_state[input_key])
                old_state[input_key] = torch.nn.parameter.Parameter(input_weight)

    new_model.load_state_dict(old_state, strict=False)

def get_optional_dict(name, config):
    if name in config:
        cfg = config[name]
    else:
        cfg =  OmegaConf.create()
    return cfg

if __name__ == "__main__":
    # now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
    sys.path.append(os.getcwd())
    opt = get_parser().parse_args()

    assert opt.base != ''
    name = os.path.split(opt.base)[-1]
    name = os.path.splitext(name)[0]
    logdir = os.path.join(opt.logdir, name)

    # logdir: checkpoints+configs
    ckptdir = os.path.join(opt.ckptdir, name)
    cfgdir = os.path.join(logdir, "configs")

    if opt.resume:
        ckpt = os.path.join(ckptdir, "last.ckpt")
        opt.resume_from_checkpoint = ckpt
        opt.finetune_from = "" # disable finetune checkpoint

    seed_everything(opt.seed)

    ###################config#####################
    config = OmegaConf.load(opt.base)  # loade default configs
    lightning_config = config.lightning
    trainer_config = config.lightning.trainer
    for k in trainer_args(opt): # overwrite trainer configs
        trainer_config[k] = getattr(opt, k)

    ###################trainer#####################
    # training framework
    gpuinfo = trainer_config["gpus"]
    rank_zero_print(f"Running on GPUs {gpuinfo}")
    ngpu = len(trainer_config.gpus.strip(",").split(','))
    trainer_config['devices'] = ngpu

    ###################model#####################
    model = instantiate_from_config(config.model)
    model.cpu()
    # load stable diffusion parameters
    if opt.finetune_from != "":
        load_pretrain_stable_diffusion(model, opt.finetune_from)

    ###################logger#####################
    # default logger configs
    default_logger_cfg = {"target": "pytorch_lightning.loggers.TensorBoardLogger",
                          "params": {"save_dir": logdir, "name": "tensorboard_logs", }}
    logger_cfg = OmegaConf.create(default_logger_cfg)
    logger = instantiate_from_config(logger_cfg)

    ###################callbacks#####################
    # default ckpt callbacks
    default_modelckpt_cfg = {"target": "pytorch_lightning.callbacks.ModelCheckpoint",
                             "params": {"dirpath": ckptdir, "filename": "{epoch:06}", "verbose": True, "save_last": True, "every_n_train_steps": 5000}}
    modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, get_optional_dict("modelcheckpoint", lightning_config))  # overwrite checkpoint configs
    default_modelckpt_cfg_repeat = {"target": "pytorch_lightning.callbacks.ModelCheckpoint",
                                    "params": {"dirpath": ckptdir, "filename": "{step:08}", "verbose": True, "save_last": False, "every_n_train_steps": 5000, "save_top_k": -1}}
    modelckpt_cfg_repeat = OmegaConf.merge(default_modelckpt_cfg_repeat)

    # add callback which sets up log directory
    default_callbacks_cfg = {
        "setup_callback": {
            "target": "train_syncdreamer.SetupCallback",
            "params": {"resume": opt.resume, "logdir": logdir, "ckptdir": ckptdir, "cfgdir": cfgdir, "config": config}
        },
        "learning_rate_logger": {
            "target": "train_syncdreamer.LearningRateMonitor",
            "params": {"logging_interval": "step"}
        },
        "cuda_callback": {"target": "train_syncdreamer.CUDACallback"},
    }
    callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, get_optional_dict("callbacks", lightning_config))
    callbacks_cfg['model_ckpt'] = modelckpt_cfg  # add checkpoint
    callbacks_cfg['model_ckpt_repeat'] = modelckpt_cfg_repeat  # add checkpoint
    callbacks = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]  # construct all callbacks
    if opt.resume:
        callbacks.append(ResumeCallBacks())

    trainer = Trainer.from_argparse_args(args=argparse.Namespace(), **trainer_config,
                                         accelerator='cuda', strategy=DDPStrategy(find_unused_parameters=False), logger=logger, callbacks=callbacks)
    trainer.logdir = logdir

    ###################data#####################
    config.data.params.seed = opt.seed
    data = instantiate_from_config(config.data)
    data.prepare_data()
    data.setup('fit')

    ####################lr#####################
    bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
    accumulate_grad_batches = trainer_config.accumulate_grad_batches if hasattr(trainer_config, "trainer_config") else 1
    rank_zero_print(f"accumulate_grad_batches = {accumulate_grad_batches}")
    model.learning_rate = base_lr
    rank_zero_print("++++ NOT USING LR SCALING ++++")
    rank_zero_print(f"Setting learning rate to {model.learning_rate:.2e}")
    model.image_dir = logdir # used in output images during training

    # run
    trainer.fit(model, data)