Spaces:
Runtime error
Runtime error
File size: 13,375 Bytes
8bb8404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import argparse, os, sys
import numpy as np
import time
import torch
import torch.nn as nn
import torchvision
import pytorch_lightning as pl
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from pytorch_lightning.strategies import DDPStrategy
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from ldm.util import instantiate_from_config
@rank_zero_only
def rank_zero_print(*args):
print(*args)
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument("-r", "--resume", dest='resume', action='store_true', default=False)
parser.add_argument("-b", "--base", type=str, default='configs/syncdreamer-training.yaml',)
parser.add_argument("-l", "--logdir", type=str, default="ckpt/logs", help="directory for logging data", )
parser.add_argument("-c", "--ckptdir", type=str, default="ckpt/models", help="directory for checkpoint data", )
parser.add_argument("-s", "--seed", type=int, default=6033, help="seed for seed_everything", )
parser.add_argument("--finetune_from", type=str, default="/cfs-cq-dcc/rondyliu/models/sd-image-conditioned-v2.ckpt", help="path to checkpoint to load model state from" )
parser.add_argument("--gpus", type=str, default='0,')
return parser
def trainer_args(opt):
parser = argparse.ArgumentParser()
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args([])
return sorted(k for k in vars(args) if hasattr(opt, k))
class SetupCallback(Callback):
def __init__(self, resume, logdir, ckptdir, cfgdir, config):
super().__init__()
self.resume = resume
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
def on_fit_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
rank_zero_print(OmegaConf.to_yaml(self.config))
OmegaConf.save(self.config, os.path.join(self.cfgdir, "configs.yaml"))
if not self.resume and os.path.exists(os.path.join(self.logdir,'checkpoints','last.ckpt')):
raise RuntimeError(f"checkpoint {os.path.join(self.logdir,'checkpoints','last.ckpt')} existing")
class ImageLogger(Callback):
def __init__(self, batch_frequency, max_images, log_images_kwargs=None):
super().__init__()
self.batch_freq = batch_frequency
self.max_images = max_images
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
@rank_zero_only
def log_to_logger(self, pl_module, images, split):
for k in images:
grid = torchvision.utils.make_grid(images[k])
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
tag = f"{split}/{k}"
pl_module.logger.experiment.add_image(tag, grid, global_step=pl_module.global_step)
@rank_zero_only
def log_to_file(self, save_dir, split, images, global_step, current_epoch):
root = os.path.join(save_dir, "images", split)
for k in images:
grid = torchvision.utils.make_grid(images[k], nrow=4)
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
filename = "{:06}-{:06}-{}.jpg".format(global_step, current_epoch, k)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path)
@rank_zero_only
def log_img(self, pl_module, batch, split="train"):
if split == "val": should_log = True
else: should_log = self.check_frequency(pl_module.global_step)
if should_log:
is_train = pl_module.training
if is_train: pl_module.eval()
with torch.no_grad():
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
for k in images:
N = min(images[k].shape[0], self.max_images)
images[k] = images[k][:N]
if isinstance(images[k], torch.Tensor):
images[k] = images[k].detach().cpu()
images[k] = torch.clamp(images[k], -1., 1.)
self.log_to_file(pl_module.logger.save_dir, split, images, pl_module.global_step, pl_module.current_epoch)
# self.log_to_logger(pl_module, images, split)
if is_train: pl_module.train()
def check_frequency(self, check_idx):
if (check_idx % self.batch_freq) == 0 and check_idx > 0:
return True
else:
return False
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
self.log_img(pl_module, batch, split="train")
@rank_zero_only
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=0):
# print('validation ....')
# print(dataloader_idx)
# print(batch_idx)
if batch_idx==0: self.log_img(pl_module, batch, split="val")
class CUDACallback(Callback):
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
def on_train_epoch_start(self, trainer, pl_module):
# Reset the memory use counter
torch.cuda.reset_peak_memory_stats(trainer.strategy.root_device.index)
torch.cuda.synchronize(trainer.strategy.root_device.index)
self.start_time = time.time()
def on_train_epoch_end(self, trainer, pl_module):
torch.cuda.synchronize(trainer.strategy.root_device.index)
max_memory = torch.cuda.max_memory_allocated(trainer.strategy.root_device.index) / 2 ** 20
epoch_time = time.time() - self.start_time
try:
max_memory = trainer.strategy.reduce(max_memory)
epoch_time = trainer.strategy.reduce(epoch_time)
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
except AttributeError:
pass
def get_node_name(name, parent_name):
if len(name) <= len(parent_name):
return False, ''
p = name[:len(parent_name)]
if p != parent_name:
return False, ''
return True, name[len(parent_name):]
class ResumeCallBacks(Callback):
def on_train_start(self, trainer, pl_module):
pl_module.optimizers().param_groups = pl_module.optimizers()._optimizer.param_groups
def load_pretrain_stable_diffusion(new_model, finetune_from):
rank_zero_print(f"Attempting to load state from {finetune_from}")
old_state = torch.load(finetune_from, map_location="cpu")
if "state_dict" in old_state: old_state = old_state["state_dict"]
in_filters_load = old_state["model.diffusion_model.input_blocks.0.0.weight"]
new_state = new_model.state_dict()
if "model.diffusion_model.input_blocks.0.0.weight" in new_state:
in_filters_current = new_state["model.diffusion_model.input_blocks.0.0.weight"]
in_shape = in_filters_current.shape
## because the model adopts additional inputs as conditions.
if in_shape != in_filters_load.shape:
input_keys = ["model.diffusion_model.input_blocks.0.0.weight", "model_ema.diffusion_modelinput_blocks00weight",]
for input_key in input_keys:
if input_key not in old_state or input_key not in new_state:
continue
input_weight = new_state[input_key]
if input_weight.size() != old_state[input_key].size():
print(f"Manual init: {input_key}")
input_weight.zero_()
input_weight[:, :4, :, :].copy_(old_state[input_key])
old_state[input_key] = torch.nn.parameter.Parameter(input_weight)
new_model.load_state_dict(old_state, strict=False)
def get_optional_dict(name, config):
if name in config:
cfg = config[name]
else:
cfg = OmegaConf.create()
return cfg
if __name__ == "__main__":
# now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
sys.path.append(os.getcwd())
opt = get_parser().parse_args()
assert opt.base != ''
name = os.path.split(opt.base)[-1]
name = os.path.splitext(name)[0]
logdir = os.path.join(opt.logdir, name)
# logdir: checkpoints+configs
ckptdir = os.path.join(opt.ckptdir, name)
cfgdir = os.path.join(logdir, "configs")
if opt.resume:
ckpt = os.path.join(ckptdir, "last.ckpt")
opt.resume_from_checkpoint = ckpt
opt.finetune_from = "" # disable finetune checkpoint
seed_everything(opt.seed)
###################config#####################
config = OmegaConf.load(opt.base) # loade default configs
lightning_config = config.lightning
trainer_config = config.lightning.trainer
for k in trainer_args(opt): # overwrite trainer configs
trainer_config[k] = getattr(opt, k)
###################trainer#####################
# training framework
gpuinfo = trainer_config["gpus"]
rank_zero_print(f"Running on GPUs {gpuinfo}")
ngpu = len(trainer_config.gpus.strip(",").split(','))
trainer_config['devices'] = ngpu
###################model#####################
model = instantiate_from_config(config.model)
model.cpu()
# load stable diffusion parameters
if opt.finetune_from != "":
load_pretrain_stable_diffusion(model, opt.finetune_from)
###################logger#####################
# default logger configs
default_logger_cfg = {"target": "pytorch_lightning.loggers.TensorBoardLogger",
"params": {"save_dir": logdir, "name": "tensorboard_logs", }}
logger_cfg = OmegaConf.create(default_logger_cfg)
logger = instantiate_from_config(logger_cfg)
###################callbacks#####################
# default ckpt callbacks
default_modelckpt_cfg = {"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {"dirpath": ckptdir, "filename": "{epoch:06}", "verbose": True, "save_last": True, "every_n_train_steps": 5000}}
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, get_optional_dict("modelcheckpoint", lightning_config)) # overwrite checkpoint configs
default_modelckpt_cfg_repeat = {"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {"dirpath": ckptdir, "filename": "{step:08}", "verbose": True, "save_last": False, "every_n_train_steps": 5000, "save_top_k": -1}}
modelckpt_cfg_repeat = OmegaConf.merge(default_modelckpt_cfg_repeat)
# add callback which sets up log directory
default_callbacks_cfg = {
"setup_callback": {
"target": "train_syncdreamer.SetupCallback",
"params": {"resume": opt.resume, "logdir": logdir, "ckptdir": ckptdir, "cfgdir": cfgdir, "config": config}
},
"learning_rate_logger": {
"target": "train_syncdreamer.LearningRateMonitor",
"params": {"logging_interval": "step"}
},
"cuda_callback": {"target": "train_syncdreamer.CUDACallback"},
}
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, get_optional_dict("callbacks", lightning_config))
callbacks_cfg['model_ckpt'] = modelckpt_cfg # add checkpoint
callbacks_cfg['model_ckpt_repeat'] = modelckpt_cfg_repeat # add checkpoint
callbacks = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg] # construct all callbacks
if opt.resume:
callbacks.append(ResumeCallBacks())
trainer = Trainer.from_argparse_args(args=argparse.Namespace(), **trainer_config,
accelerator='cuda', strategy=DDPStrategy(find_unused_parameters=False), logger=logger, callbacks=callbacks)
trainer.logdir = logdir
###################data#####################
config.data.params.seed = opt.seed
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup('fit')
####################lr#####################
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
accumulate_grad_batches = trainer_config.accumulate_grad_batches if hasattr(trainer_config, "trainer_config") else 1
rank_zero_print(f"accumulate_grad_batches = {accumulate_grad_batches}")
model.learning_rate = base_lr
rank_zero_print("++++ NOT USING LR SCALING ++++")
rank_zero_print(f"Setting learning rate to {model.learning_rate:.2e}")
model.image_dir = logdir # used in output images during training
# run
trainer.fit(model, data)
|