Spaces:
Build error
Build error
Commit
·
e8b88fa
1
Parent(s):
8fbffaf
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the pre-trained text classification model from Hugging Face
|
6 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
8 |
+
|
9 |
+
def classify_text(text):
|
10 |
+
# Preprocess the text input
|
11 |
+
encoded_text = tokenizer(text, truncation=True, padding=True, return_tensors="pt")
|
12 |
+
|
13 |
+
# Make predictions using the pre-trained model
|
14 |
+
with torch.no_grad():
|
15 |
+
output = model(**encoded_text)
|
16 |
+
logits = output.logits
|
17 |
+
predictions = np.argmax(logits, axis=1)
|
18 |
+
|
19 |
+
# Convert predictions to class labels
|
20 |
+
class_labels = ["positive", "negative"]
|
21 |
+
predicted_labels = [class_labels[i] for i in predictions]
|
22 |
+
|
23 |
+
# Return the predicted labels
|
24 |
+
return predicted_labels
|
25 |
+
|
26 |
+
# Define the Gradio interface
|
27 |
+
interface = gr.Interface(
|
28 |
+
fn=classify_text,
|
29 |
+
inputs=gr.inputs.Textbox(label="Enter text to classify:"),
|
30 |
+
outputs=gr.outputs.Label(label="Predicted Label:")
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch the Gradio interface
|
34 |
+
interface.launch()
|