basit123796 commited on
Commit
e330aa1
·
verified ·
1 Parent(s): af38a18

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -10
app.py CHANGED
@@ -1,5 +1,3 @@
1
- #!/usr/bin/env python
2
-
3
  import os
4
  import random
5
  import uuid
@@ -36,26 +34,23 @@ if torch.cuda.is_available():
36
  if ENABLE_CPU_OFFLOAD:
37
  pipe.enable_model_cpu_offload()
38
  else:
39
- pipe.to(device)
40
  print("Loaded on Device!")
41
-
42
  if USE_TORCH_COMPILE:
43
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
44
  print("Model Compiled!")
45
 
46
-
47
  def save_image(img):
48
  unique_name = str(uuid.uuid4()) + ".png"
49
  img.save(unique_name)
50
  return unique_name
51
 
52
-
53
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
54
  if randomize_seed:
55
  seed = random.randint(0, MAX_SEED)
56
  return seed
57
 
58
-
59
  @spaces.GPU(enable_queue=True)
60
  def generate(
61
  prompt: str,
@@ -69,7 +64,6 @@ def generate(
69
  use_resolution_binning: bool = True,
70
  progress=gr.Progress(track_tqdm=True),
71
  ):
72
- pipe = some_function_to_create_pipe()
73
  seed = int(randomize_seed_fn(seed, randomize_seed))
74
  generator = torch.Generator().manual_seed(seed)
75
 
@@ -93,7 +87,6 @@ def generate(
93
  print(image_paths)
94
  return image_paths, seed
95
 
96
-
97
  examples = [
98
  "neon holography crystal cat",
99
  "a cat eating a piece of cheese",
@@ -203,4 +196,4 @@ with gr.Blocks(css=css) as demo:
203
  )
204
 
205
  if __name__ == "__main__":
206
- demo.queue(max_size=20).launch()
 
 
 
1
  import os
2
  import random
3
  import uuid
 
34
  if ENABLE_CPU_OFFLOAD:
35
  pipe.enable_model_cpu_offload()
36
  else:
37
+ pipe.to(device)
38
  print("Loaded on Device!")
39
+
40
  if USE_TORCH_COMPILE:
41
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
42
  print("Model Compiled!")
43
 
 
44
  def save_image(img):
45
  unique_name = str(uuid.uuid4()) + ".png"
46
  img.save(unique_name)
47
  return unique_name
48
 
 
49
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
50
  if randomize_seed:
51
  seed = random.randint(0, MAX_SEED)
52
  return seed
53
 
 
54
  @spaces.GPU(enable_queue=True)
55
  def generate(
56
  prompt: str,
 
64
  use_resolution_binning: bool = True,
65
  progress=gr.Progress(track_tqdm=True),
66
  ):
 
67
  seed = int(randomize_seed_fn(seed, randomize_seed))
68
  generator = torch.Generator().manual_seed(seed)
69
 
 
87
  print(image_paths)
88
  return image_paths, seed
89
 
 
90
  examples = [
91
  "neon holography crystal cat",
92
  "a cat eating a piece of cheese",
 
196
  )
197
 
198
  if __name__ == "__main__":
199
+ demo.queue(max_size=20).launch()