File size: 4,760 Bytes
708432b
 
 
 
 
 
47511ce
708432b
 
 
 
 
47511ce
 
 
 
 
708432b
 
47511ce
 
 
 
 
708432b
 
b690674
708432b
 
 
 
 
47511ce
708432b
b690674
708432b
 
47511ce
 
 
 
708432b
 
47511ce
708432b
 
47511ce
708432b
47511ce
 
 
708432b
47511ce
 
 
 
 
 
 
 
708432b
 
 
 
 
 
 
 
47511ce
 
 
 
 
 
 
 
708432b
 
 
47511ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708432b
 
 
47511ce
 
 
 
 
 
 
 
 
 
708432b
 
 
47511ce
708432b
47511ce
 
708432b
 
47511ce
708432b
 
 
 
 
 
 
 
47511ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient

ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")

models = [
    "google/gemma-7b",
    "google/gemma-7b-it",
    "google/gemma-2b",
    "google/gemma-2b-it"
]
clients = [
    InferenceClient(models[0]),
    InferenceClient(models[1]),
    InferenceClient(models[2]),
    InferenceClient(models[3]),
]

VERBOSE = False


def load_models():
    return gr.update(label=models[0])


def format_prompt(message, history):
    prompt = ""
    if history:
        for user_prompt, bot_response in history:
            prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
            prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
            if VERBOSE:
                print(prompt)
    prompt += message
    return prompt


def chat_inf(prompt, history, memory, temp, tokens, top_p, rep_p, chat_mem):
    hist_len = 0
    client = clients[0]
    if not history:
        history = []
        hist_len = 0
    if not memory:
        memory = []
        mem_len = 0
    if memory:
        for ea in memory[0 - chat_mem :]:
            hist_len += len(str(ea))
    in_len = len(prompt) + hist_len

    if (in_len + tokens) > 8000:
        history.append(
            (
                prompt,
                "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value",
            )
        )
        yield history, memory
    else:
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
        )
        formatted_prompt = format_prompt(prompt, memory[0 - chat_mem :])
        stream = client.text_generation(
            formatted_prompt,
            **generate_kwargs,
            stream=True,
            details=True,
            return_full_text=True,
        )
        output = ""
        for response in stream:
            output += response.token.text
            yield [(prompt, output)], memory
        history.append((prompt, output))
        memory.append((prompt, output))
        yield history, memory

    if VERBOSE:
        print("\n######### HIST " + str(in_len))
        print("\n######### TOKENS " + str(tokens))


def get_screenshot(
    chat: list,
    height=5000,
    width=600,
    chatblock=[],
    theme="light",
    wait=3000,
    header=True,
):
    tog = 0
    if chatblock:
        tog = 3
    result = ss_client.predict(
        str(chat),
        height,
        width,
        chatblock,
        header,
        theme,
        wait,
        api_name="/run_script",
    )
    out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
    return out


def clear_fn():
    return None, None, None, None


with gr.Blocks() as app:
    memory = gr.State()
    chat_b = gr.Chatbot(height=500)
    with gr.Group():
        with gr.Row():
            with gr.Column(scale=3):
                inp = gr.Textbox(label="Prompt")
                btn = gr.Button("Chat")
            with gr.Column(scale=1):
                with gr.Group():
                    temp = gr.Slider(
                        label="Temperature",
                        step=0.01,
                        minimum=0.01,
                        maximum=1.0,
                        value=0.49,
                    )
                    tokens = gr.Slider(
                        label="Max new tokens",
                        value=1600,
                        minimum=0,
                        maximum=8000,
                        step=64,
                        interactive=True,
                        visible=True,
                        info="The maximum number of tokens",
                    )
                    top_p = gr.Slider(
                        label="Top-P",
                        step=0.01,
                        minimum=0.01,
                        maximum=1.0,
                        value=0.49,
                    )
                    rep_p = gr.Slider(
                        label="Repetition Penalty",
                        step=0.01,
                        minimum=0.1,
                        maximum=2.0,
                        value=0.99,
                    )
                    chat_mem = gr.Number(
                        label="Chat Memory",
                        info="Number of previous chats to retain",
                        value=4,
                    )

    app.load(load_models)
    chat_sub = inp.submit().then(
        chat_inf, [inp, chat_b, memory, temp, tokens, top_p, rep_p, chat_mem], [chat_b, memory]
    )
    go = btn.click().then(
        chat_inf,