Spaces:
Runtime error
Runtime error
File size: 4,169 Bytes
708432b 208be49 708432b 208be49 708432b 208be49 708432b 208be49 708432b b690674 708432b 208be49 708432b b690674 708432b 208be49 708432b 208be49 708432b 208be49 708432b 208be49 708432b 208be49 708432b 208be49 708432b 208be49 708432b 208be49 708432b 208be49 708432b 208be49 708432b 208be49 7134f20 208be49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models=[
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it"
]
clients=[
InferenceClient(models[0]),
InferenceClient(models[1]),
InferenceClient(models[2]),
InferenceClient(models[3]),
]
VERBOSE=False
def load_models(inp):
if VERBOSE==True:
print(type(inp))
print(inp)
print(models[inp])
return gr.update(label=models[inp])
def format_prompt(message, history):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
if VERBOSE==True:
print(prompt)
prompt += message
return prompt
def chat_inf(prompt,history,memory,client_choice,temp,tokens,top_p,rep_p,chat_mem):
hist_len=0
client=clients[int(client_choice)-1]
if not history:
history = []
hist_len=0
if not memory:
memory = []
mem_len=0
if memory:
for ea in memory[0-chat_mem:]:
hist_len+=len(str(ea))
in_len=len(prompt)+hist_len
if (in_len+tokens) > 8000:
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
yield history,memory
else:
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
)
formatted_prompt = format_prompt(prompt, memory[0-chat_mem:])
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
yield [(prompt,output)],memory
history.append((prompt,output))
memory.append((prompt,output))
yield history,memory
if VERBOSE==True:
print("\n######### HIST "+str(in_len))
print("\n######### TOKENS "+str(tokens))
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
return out
def clear_fn():
return None,None,None,None
with gr.Blocks() as app:
memory=gr.State()
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
client_choice.change(load_models,client_choice,[chat_b])
app.load(load_models,client_choice,[chat_b])
chat_sub=inp.submit().then(chat_inf,[inp,chat_b,memory,client_choice,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory])
go=btn.click().then(chat_inf,[inp,chat_b,memory,client_choice,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory])
app.queue(default_concurrency_limit=10).launch()
|