Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
3 |
from huggingface_hub import InferenceClient
|
|
|
4 |
|
5 |
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
|
6 |
|
@@ -37,7 +38,7 @@ def format_prompt(message, history):
|
|
37 |
prompt += message
|
38 |
return prompt
|
39 |
|
40 |
-
def chat_inf(prompt,history,memory,client_choice,temp,tokens,top_p,rep_p,chat_mem):
|
41 |
hist_len=0
|
42 |
client=clients[int(client_choice)-1]
|
43 |
if not history:
|
@@ -49,7 +50,7 @@ def chat_inf(prompt,history,memory,client_choice,temp,tokens,top_p,rep_p,chat_me
|
|
49 |
if memory:
|
50 |
for ea in memory[0-chat_mem:]:
|
51 |
hist_len+=len(str(ea))
|
52 |
-
in_len=len(prompt)+hist_len
|
53 |
|
54 |
if (in_len+tokens) > 8000:
|
55 |
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
|
@@ -61,8 +62,9 @@ def chat_inf(prompt,history,memory,client_choice,temp,tokens,top_p,rep_p,chat_me
|
|
61 |
top_p=top_p,
|
62 |
repetition_penalty=rep_p,
|
63 |
do_sample=True,
|
|
|
64 |
)
|
65 |
-
formatted_prompt = format_prompt(prompt, memory[0-chat_mem:])
|
66 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
67 |
output = ""
|
68 |
for response in stream:
|
@@ -86,7 +88,14 @@ def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",w
|
|
86 |
|
87 |
def clear_fn():
|
88 |
return None,None,None,None
|
|
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
with gr.Blocks() as app:
|
91 |
memory=gr.State()
|
92 |
chat_b = gr.Chatbot(height=500)
|
@@ -97,8 +106,10 @@ with gr.Blocks() as app:
|
|
97 |
btn = gr.Button("Chat")
|
98 |
with gr.Column(scale=1):
|
99 |
with gr.Group():
|
100 |
-
|
|
|
101 |
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
|
|
|
102 |
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
|
103 |
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
|
104 |
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
|
@@ -107,7 +118,7 @@ with gr.Blocks() as app:
|
|
107 |
client_choice.change(load_models,client_choice,[chat_b])
|
108 |
app.load(load_models,client_choice,[chat_b])
|
109 |
|
110 |
-
chat_sub=inp.submit().then(chat_inf,[inp,chat_b,memory,client_choice,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory])
|
111 |
-
go=btn.click().then(chat_inf,[inp,chat_b,memory,client_choice,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory])
|
112 |
|
113 |
app.queue(default_concurrency_limit=10).launch()
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
import random
|
5 |
|
6 |
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
|
7 |
|
|
|
38 |
prompt += message
|
39 |
return prompt
|
40 |
|
41 |
+
def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem):
|
42 |
hist_len=0
|
43 |
client=clients[int(client_choice)-1]
|
44 |
if not history:
|
|
|
50 |
if memory:
|
51 |
for ea in memory[0-chat_mem:]:
|
52 |
hist_len+=len(str(ea))
|
53 |
+
in_len=len(system_prompt+prompt)+hist_len
|
54 |
|
55 |
if (in_len+tokens) > 8000:
|
56 |
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
|
|
|
62 |
top_p=top_p,
|
63 |
repetition_penalty=rep_p,
|
64 |
do_sample=True,
|
65 |
+
seed=seed,
|
66 |
)
|
67 |
+
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:])
|
68 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
69 |
output = ""
|
70 |
for response in stream:
|
|
|
88 |
|
89 |
def clear_fn():
|
90 |
return None,None,None,None
|
91 |
+
rand_val=random.randint(1,1111111111111111)
|
92 |
|
93 |
+
def check_rand(inp,val):
|
94 |
+
if inp==True:
|
95 |
+
return random.randint(1,1111111111111111)
|
96 |
+
else:
|
97 |
+
return int(val)
|
98 |
+
|
99 |
with gr.Blocks() as app:
|
100 |
memory=gr.State()
|
101 |
chat_b = gr.Chatbot(height=500)
|
|
|
106 |
btn = gr.Button("Chat")
|
107 |
with gr.Column(scale=1):
|
108 |
with gr.Group():
|
109 |
+
rand = gr.Checkbox(label="Random Seed", value=True)
|
110 |
+
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
|
111 |
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
|
112 |
+
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
|
113 |
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
|
114 |
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
|
115 |
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
|
|
|
118 |
client_choice.change(load_models,client_choice,[chat_b])
|
119 |
app.load(load_models,client_choice,[chat_b])
|
120 |
|
121 |
+
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory])
|
122 |
+
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory])
|
123 |
|
124 |
app.queue(default_concurrency_limit=10).launch()
|