import gradio as gr from gradio_client import Client from huggingface_hub import InferenceClient ss_client = Client("https://omnibus-html-image-current-tab.hf.space/") models = [ "google/gemma-7b", "google/gemma-7b-it", "google/gemma-2b", "google/gemma-2b-it" ] clients = [ InferenceClient(models[0]), InferenceClient(models[1]), InferenceClient(models[2]), InferenceClient(models[3]), ] VERBOSE = False def load_models(): return gr.update(label=models[0]) def format_prompt(message, history): prompt = "" if history: for user_prompt, bot_response in history: prompt += f"user{user_prompt}" prompt += f"model{bot_response}" if VERBOSE: print(prompt) prompt += message return prompt def chat_inf(prompt, history, memory, temp, tokens, top_p, rep_p, chat_mem): hist_len = 0 client = clients[0] if not history: history = [] hist_len = 0 if not memory: memory = [] mem_len = 0 if memory: for ea in memory[0 - chat_mem :]: hist_len += len(str(ea)) in_len = len(prompt) + hist_len if (in_len + tokens) > 8000: history.append( ( prompt, "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value", ) ) yield history, memory else: generate_kwargs = dict( temperature=temp, max_new_tokens=tokens, top_p=top_p, repetition_penalty=rep_p, do_sample=True, ) formatted_prompt = format_prompt(prompt, memory[0 - chat_mem :]) stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True, ) output = "" for response in stream: output += response.token.text yield [(prompt, output)], memory history.append((prompt, output)) memory.append((prompt, output)) yield history, memory if VERBOSE: print("\n######### HIST " + str(in_len)) print("\n######### TOKENS " + str(tokens)) def get_screenshot( chat: list, height=5000, width=600, chatblock=[], theme="light", wait=3000, header=True, ): tog = 0 if chatblock: tog = 3 result = ss_client.predict( str(chat), height, width, chatblock, header, theme, wait, api_name="/run_script", ) out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}' return out def clear_fn(): return None, None, None, None with gr.Blocks() as app: memory = gr.State() chat_b = gr.Chatbot(height=500) with gr.Group(): with gr.Row(): with gr.Column(scale=3): inp = gr.Textbox(label="Prompt") btn = gr.Button("Chat") with gr.Column(scale=1): with gr.Group(): temp = gr.Slider( label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.49, ) tokens = gr.Slider( label="Max new tokens", value=1600, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens", ) top_p = gr.Slider( label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.49, ) rep_p = gr.Slider( label="Repetition Penalty", step=0.01, minimum=0.1, maximum=2.0, value=0.99, ) chat_mem = gr.Number( label="Chat Memory", info="Number of previous chats to retain", value=4, ) app.load(load_models) chat_sub = inp.submit().then( chat_inf, [inp, chat_b, memory, temp, tokens, top_p, rep_p, chat_mem], [chat_b, memory] ) go = btn.click().then( chat_inf,