import gradio as gr from gradio_client import Client from huggingface_hub import InferenceClient import random ss_client = Client("https://omnibus-html-image-current-tab.hf.space/") #models=[ "google/gemma-7b", "google/gemma-7b-it", "google/gemma-2b", "google/gemma-2b-it" ]# clients=[ InferenceClient(models[0]), InferenceClient(models[1]), InferenceClient(models[2]), InferenceClient(models[3]), ] VERBOSE=False def load_models(inp): if VERBOSE==True: print(type(inp)) print(inp) print(models[inp]) return gr.update(label=models[inp]) def format_prompt(message, history): prompt = "" if history: for user_prompt, bot_response in history: prompt += f"user{user_prompt}" prompt += f"model{bot_response}" if VERBOSE==True: print(prompt) prompt += message return prompt def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem): hist_len=0 client=clients[int(client_choice)-1] if not history: history = [] hist_len=0 if not memory: memory = [] mem_len=0 if memory: for ea in memory[0-chat_mem:]: hist_len+=len(str(ea)) in_len=len(system_prompt+prompt)+hist_len if (in_len+tokens) > 8000: history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value")) yield history,memory else: generate_kwargs = dict( temperature=temp, max_new_tokens=tokens, top_p=top_p, repetition_penalty=rep_p, do_sample=True, seed=seed, ) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:]) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text yield [(prompt,output)],memory history.append((prompt,output)) memory.append((prompt,output)) yield history,memory if VERBOSE==True: print("\n######### HIST "+str(in_len)) print("\n######### TOKENS "+str(tokens)) def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True): tog = 0 if chatblock: tog = 3 result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script") out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}' return out def clear_fn(): return None,None,None,None rand_val=random.randint(1,1111111111111111) def check_rand(inp,val): if inp==True: return random.randint(1,1111111111111111) else: return int(val) with gr.Blocks() as app: memory=gr.State() chat_b = gr.Chatbot(height=500) with gr.Group(): with gr.Row(): with gr.Column(scale=3): inp = gr.Textbox(label="Prompt") btn = gr.Button("Chat") with gr.Column(scale=1): with gr.Group(): rand = gr.Checkbox(label="Random Seed", value=True) seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val) tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens") temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49) top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49) rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99) chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4) client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True) client_choice.change(load_models,client_choice,[chat_b]) app.load(load_models,client_choice,[chat_b]) chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory]) go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory]) app.queue(default_concurrency_limit=10).launch()