File size: 16,356 Bytes
3f9659e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import random
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import CosineAnnealingLR
from einops import rearrange
from ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from ldm.models.diffusion.ddpm import DDPM
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.util import instantiate_from_config, default
from ldm.models.diffusion.ddim import DDIMSampler
import torch
from torch.optim.optimizer import Optimizer
from torch.optim.lr_scheduler import LambdaLR
def disabled_train(self, mode=True):
return self
# =============================================================
# 可训练部分 ControlNet
# =============================================================
class ControlNet(nn.Module):
def __init__(
self,
in_channels, # 9
model_channels, # 320
hint_channels, # 20
attention_resolutions, # [4,2,1]
num_res_blocks, # 2
channel_mult=(1, 2, 4, 8), # [1,2,4,4]
num_head_channels=-1, # 64
transformer_depth=1, # 1
context_dim=None, # 768
use_checkpoint=False, # True
dropout=0,
conv_resample=True,
dims=2,
num_heads=-1,
use_scale_shift_norm=False):
super(ControlNet, self).__init__()
self.dims = dims
self.in_channels = in_channels
self.model_channels = model_channels
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.use_checkpoint = use_checkpoint
self.dtype = torch.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
# time 编码器
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
# input 编码器
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
# hint 编码器
self.input_hint_block = TimestepEmbedSequential(
conv_nd(dims, hint_channels, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
nn.SiLU(),
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
)
# UNet
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
num_heads = ch // num_head_channels
dim_head = num_head_channels
disabled_sa = False
layers.append(
SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
ds *= 2
num_heads = ch // num_head_channels
dim_head = num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, timesteps, reference_dino):
# 处理输入
context = reference_dino
t_emb = timestep_embedding(timesteps, self.model_channels)
emb = self.time_embed(t_emb)
guided_hint = self.input_hint_block(hint, emb)
# 预测 control
outs = []
h = x.type(self.dtype)
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
return outs
# =============================================================
# 固定参数部分 ControlledUnetModel
# =============================================================
class ControlledUnetModel(UNetModel):
def forward(self, x, timesteps=None, context=None, control=None):
hs = []
# UNet 的上半部分
with torch.no_grad():
t_emb = timestep_embedding(timesteps, self.model_channels)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
# 注入 control
if control is not None:
h += control.pop()
# UNet 的下半部分
for i, module in enumerate(self.output_blocks):
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
h = module(h, emb, context)
# 输出
h = h.type(x.dtype)
h = self.out(h)
return h
# =============================================================
# 主干网络 ControlLDM
# =============================================================
class ControlLDM(DDPM):
def __init__(self,
control_stage_config, # ControlNet
first_stage_config, # AutoencoderKL
cond_stage_config, # FrozenCLIPImageEmbedder
scale_factor=1.0, # 0.18215
*args, **kwargs):
self.num_timesteps_cond = 1
super().__init__(*args, **kwargs) # self.model 和 self.register_buffer
self.control_model = instantiate_from_config(control_stage_config) # self.control_model
self.instantiate_first_stage(first_stage_config) # self.first_stage_model 调用 AutoencoderKL
self.instantiate_cond_stage(cond_stage_config) # self.cond_stage_model 调用 FrozenCLIPImageEmbedder
self.proj_out=nn.Linear(1024, 768) # 全连接层
self.scale_factor = scale_factor # 0.18215
self.learnable_vector = nn.Parameter(torch.randn((1,1,768)), requires_grad=False)
self.trainable_vector = nn.Parameter(torch.randn((1,1,768)), requires_grad=True)
self.dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
self.dinov2_vitl14.eval()
self.dinov2_vitl14.train = disabled_train
for param in self.dinov2_vitl14.parameters():
param.requires_grad = False
self.linear = nn.Linear(1024, 768)
# self.dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14')
# self.dinov2_vitg14.eval()
# self.dinov2_vitg14.train = disabled_train
# for param in self.dinov2_vitg14.parameters():
# param.requires_grad = False
# self.linear = nn.Linear(1536, 768)
# AutoencoderKL 不训练
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
# FrozenCLIPImageEmbedder 不训练
def instantiate_cond_stage(self, config):
model = instantiate_from_config(config)
self.cond_stage_model = model.eval()
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
# 训练
def training_step(self, batch, batch_idx):
z_new, reference, hint= self.get_input(batch) # 加载数据
loss= self(z_new, reference, hint) # 计算损失
self.log("loss", # 记录损失
loss,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True)
self.log('lr_abs', # 记录学习率
self.optimizers().param_groups[0]['lr'],
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False)
return loss
# 加载数据
@torch.no_grad()
def get_input(self, batch):
# 加载原始数据
x, inpaint, mask, reference, hint = super().get_input(batch)
# AutoencoderKL 处理真值
encoder_posterior = self.first_stage_model.encode(x)
z = self.scale_factor * (encoder_posterior.sample()).detach()
# AutoencoderKL 处理 inpaint
encoder_posterior_inpaint = self.first_stage_model.encode(inpaint)
z_inpaint = self.scale_factor * (encoder_posterior_inpaint.sample()).detach()
# Resize mask
mask_resize = torchvision.transforms.Resize([z.shape[-2],z.shape[-1]])(mask)
# 整理 z_new
z_new = torch.cat((z,z_inpaint,mask_resize),dim=1)
out = [z_new, reference, hint]
return out
# 计算损失
def forward(self, z_new, reference, hint):
# 随机时间 t
t = torch.randint(0, self.num_timesteps, (z_new.shape[0],), device=self.device).long()
# CLIP 处理 reference
reference_clip = self.cond_stage_model.encode(reference)
reference_clip = self.proj_out(reference_clip)
# DINO 处理 reference
dino = self.dinov2_vitl14(reference,is_training=True)
dino1 = dino["x_norm_clstoken"].unsqueeze(1)
dino2 = dino["x_norm_patchtokens"]
reference_dino = torch.cat((dino1, dino2), dim=1)
reference_dino = self.linear(reference_dino)
# 随机加噪
noise = torch.randn_like(z_new[:,:4,:,:])
x_noisy = self.q_sample(x_start=z_new[:,:4,:,:], t=t, noise=noise)
x_noisy = torch.cat((x_noisy, z_new[:,4:,:,:]),dim=1)
# 预测噪声
if random.uniform(0, 1)<0.2:
model_output = self.apply_model(x_noisy, hint, t, reference_clip, reference_dino)
else:
model_output = self.apply_model(x_noisy, hint, t, reference_clip, reference_dino)
# 计算损失
loss = self.get_loss(model_output, noise, mean=False).mean([1, 2, 3])
loss = loss.mean()
return loss
# 预测噪声
def apply_model(self, x_noisy, hint, t, reference_clip, reference_dino):
# 预测 control
control = self.control_model(x_noisy, hint, t, reference_dino)
# 调用 PBE
model_output = self.model(x_noisy, t, reference_clip, control)
return model_output
# 优化器
def configure_optimizers(self):
# 学习率设置
lr = self.learning_rate
params = list(self.control_model.parameters())+list(self.linear.parameters())
opt = torch.optim.AdamW(params, lr=lr)
return opt
# 采样
@torch.no_grad()
def sample_log(self, batch, ddim_steps=50, ddim_eta=0.):
z_new, reference, hint = self.get_input(batch)
x, _, mask, _, _ = super().get_input(batch)
log = dict()
# log["reference"] = reference
# reconstruction = 1. / self.scale_factor * z_new[:,:4,:,:]
# log["reconstruction"] = self.first_stage_model.decode(reconstruction)
log["mask"] = mask
test_model_kwargs = {}
test_model_kwargs['inpaint_image'] = z_new[:,4:8,:,:]
test_model_kwargs['inpaint_mask'] = z_new[:,8:,:,:]
ddim_sampler = DDIMSampler(self)
shape = (self.channels, self.image_size, self.image_size)
samples, _ = ddim_sampler.sample(ddim_steps,
reference.shape[0],
shape,
hint,
reference,
verbose=False,
eta=ddim_eta,
test_model_kwargs=test_model_kwargs)
samples = 1. / self.scale_factor * samples
x_samples = self.first_stage_model.decode(samples[:,:4,:,:])
# log["samples"] = x_samples
x = torchvision.transforms.Resize([512, 512])(x)
reference = torchvision.transforms.Resize([512, 512])(reference)
x_samples = torchvision.transforms.Resize([512, 512])(x_samples)
log["grid"] = torch.cat((x, reference, x_samples), dim=2)
return log
|