File size: 16,356 Bytes
3f9659e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import random
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import CosineAnnealingLR

from einops import rearrange
from ldm.modules.diffusionmodules.util import (
    conv_nd,
    linear,
    zero_module,
    timestep_embedding,
)
from ldm.models.diffusion.ddpm import DDPM
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.util import instantiate_from_config, default
from ldm.models.diffusion.ddim import DDIMSampler

import torch
from torch.optim.optimizer import Optimizer
from torch.optim.lr_scheduler import LambdaLR


def disabled_train(self, mode=True):
    return self


# =============================================================
# 可训练部分 ControlNet
# =============================================================
class ControlNet(nn.Module):
    def __init__(

            self,

            in_channels,                                # 9

            model_channels,                             # 320

            hint_channels,                              # 20

            attention_resolutions,                      # [4,2,1]

            num_res_blocks,                             # 2

            channel_mult=(1, 2, 4, 8),                  # [1,2,4,4]

            num_head_channels=-1,                       # 64

            transformer_depth=1,                        # 1

            context_dim=None,                           # 768

            use_checkpoint=False,                       # True

            dropout=0,

            conv_resample=True,

            dims=2,

            num_heads=-1,

            use_scale_shift_norm=False):
        super(ControlNet, self).__init__()
        self.dims = dims
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.use_checkpoint = use_checkpoint
        self.dtype = torch.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels

        # time 编码器
        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        # input 编码器
        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
                )
            ]
        )
        self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])

        # hint 编码器
        self.input_hint_block = TimestepEmbedSequential(
            conv_nd(dims, hint_channels, 16, 3, padding=1),
            nn.SiLU(),
            conv_nd(dims, 16, 16, 3, padding=1),
            nn.SiLU(),
            conv_nd(dims, 16, 32, 3, padding=1, stride=2),
            nn.SiLU(),
            conv_nd(dims, 32, 32, 3, padding=1),
            nn.SiLU(),
            conv_nd(dims, 32, 96, 3, padding=1, stride=2),
            nn.SiLU(),
            conv_nd(dims, 96, 96, 3, padding=1),
            nn.SiLU(),
            conv_nd(dims, 96, 256, 3, padding=1, stride=2),
            nn.SiLU(),
            zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
        )

        # UNet
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    num_heads = ch // num_head_channels
                    dim_head = num_head_channels
                    disabled_sa = False

                    layers.append(
                        SpatialTransformer(
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim)
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self.zero_convs.append(self.make_zero_conv(ch))
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                self.zero_convs.append(self.make_zero_conv(ch))
                ds *= 2
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self.middle_block_out = self.make_zero_conv(ch)
    
    def make_zero_conv(self, channels):
        return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
    
    def forward(self, x, hint, timesteps, reference_dino):
        # 处理输入
        context = reference_dino
        t_emb = timestep_embedding(timesteps, self.model_channels)
        emb = self.time_embed(t_emb)
        guided_hint = self.input_hint_block(hint, emb)

        # 预测 control
        outs = []
        h = x.type(self.dtype)
        for module, zero_conv in zip(self.input_blocks, self.zero_convs):
            if guided_hint is not None:
                h = module(h, emb, context)
                h += guided_hint
                guided_hint = None
            else:
                h = module(h, emb, context)
            outs.append(zero_conv(h, emb, context))
        h = self.middle_block(h, emb, context)
        outs.append(self.middle_block_out(h, emb, context))

        return outs

# =============================================================
# 固定参数部分 ControlledUnetModel
# =============================================================
class ControlledUnetModel(UNetModel):
    def forward(self, x, timesteps=None, context=None, control=None):
        hs = []
        
        # UNet 的上半部分
        with torch.no_grad():
            t_emb = timestep_embedding(timesteps, self.model_channels)
            emb = self.time_embed(t_emb)
            h = x.type(self.dtype)
            for module in self.input_blocks:
                h = module(h, emb, context)
                hs.append(h)
            h = self.middle_block(h, emb, context)

        # 注入 control
        if control is not None:
            h += control.pop()
        
        # UNet 的下半部分
        for i, module in enumerate(self.output_blocks):
            h = torch.cat([h, hs.pop() + control.pop()], dim=1)
            h = module(h, emb, context)

        # 输出
        h = h.type(x.dtype)
        h = self.out(h)

        return h

# =============================================================
# 主干网络 ControlLDM
# =============================================================
class ControlLDM(DDPM):
    def __init__(self,

                 control_stage_config,          # ControlNet

                 first_stage_config,            # AutoencoderKL

                 cond_stage_config,             # FrozenCLIPImageEmbedder

                 scale_factor=1.0,              # 0.18215

                 *args, **kwargs):
        self.num_timesteps_cond = 1
        super().__init__(*args, **kwargs)                                       # self.model 和 self.register_buffer
        self.control_model = instantiate_from_config(control_stage_config)      # self.control_model
        self.instantiate_first_stage(first_stage_config)                        # self.first_stage_model 调用 AutoencoderKL
        self.instantiate_cond_stage(cond_stage_config)                          # self.cond_stage_model 调用 FrozenCLIPImageEmbedder
        self.proj_out=nn.Linear(1024, 768)                                      # 全连接层
        self.scale_factor = scale_factor                                        # 0.18215
        self.learnable_vector = nn.Parameter(torch.randn((1,1,768)), requires_grad=False)
        self.trainable_vector = nn.Parameter(torch.randn((1,1,768)), requires_grad=True)

        self.dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
        self.dinov2_vitl14.eval()
        self.dinov2_vitl14.train = disabled_train
        for param in self.dinov2_vitl14.parameters():
            param.requires_grad = False 
        self.linear = nn.Linear(1024, 768)

        # self.dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14')
        # self.dinov2_vitg14.eval()
        # self.dinov2_vitg14.train = disabled_train
        # for param in self.dinov2_vitg14.parameters():
        #     param.requires_grad = False
        # self.linear = nn.Linear(1536, 768)

    # AutoencoderKL 不训练
    def instantiate_first_stage(self, config):
        model = instantiate_from_config(config)
        self.first_stage_model = model.eval()
        self.first_stage_model.train = disabled_train
        for param in self.first_stage_model.parameters():
            param.requires_grad = False

    # FrozenCLIPImageEmbedder 不训练
    def instantiate_cond_stage(self, config):
        model = instantiate_from_config(config)
        self.cond_stage_model = model.eval()
        self.cond_stage_model.train = disabled_train
        for param in self.cond_stage_model.parameters():
            param.requires_grad = False

    # 训练
    def training_step(self, batch, batch_idx):
        z_new, reference, hint= self.get_input(batch)               # 加载数据
        loss= self(z_new, reference, hint)                          # 计算损失
        self.log("loss",                                            # 记录损失
                 loss,                                  
                 prog_bar=True,
                 logger=True, 
                 on_step=True, 
                 on_epoch=True)
        self.log('lr_abs',                                          # 记录学习率
                 self.optimizers().param_groups[0]['lr'], 
                 prog_bar=True, 
                 logger=True, 
                 on_step=True, 
                 on_epoch=False)
        return loss

    # 加载数据
    @torch.no_grad()
    def get_input(self, batch):
        
        # 加载原始数据
        x, inpaint, mask, reference, hint = super().get_input(batch)
        
        # AutoencoderKL 处理真值
        encoder_posterior = self.first_stage_model.encode(x)                           
        z = self.scale_factor * (encoder_posterior.sample()).detach()
        
        # AutoencoderKL 处理 inpaint
        encoder_posterior_inpaint = self.first_stage_model.encode(inpaint)     
        z_inpaint = self.scale_factor * (encoder_posterior_inpaint.sample()).detach()
        
        # Resize mask
        mask_resize = torchvision.transforms.Resize([z.shape[-2],z.shape[-1]])(mask)
        
        # 整理 z_new
        z_new = torch.cat((z,z_inpaint,mask_resize),dim=1)
        out  = [z_new, reference, hint]
        
        return out
    
    # 计算损失
    def forward(self, z_new, reference, hint):
        
        # 随机时间 t
        t = torch.randint(0, self.num_timesteps, (z_new.shape[0],), device=self.device).long()
        
        # CLIP 处理 reference
        reference_clip = self.cond_stage_model.encode(reference)
        reference_clip = self.proj_out(reference_clip)

        # DINO 处理 reference
        dino = self.dinov2_vitl14(reference,is_training=True)
        dino1 = dino["x_norm_clstoken"].unsqueeze(1)
        dino2 = dino["x_norm_patchtokens"]
        reference_dino = torch.cat((dino1, dino2), dim=1)
        reference_dino = self.linear(reference_dino)

        # 随机加噪
        noise = torch.randn_like(z_new[:,:4,:,:])
        x_noisy = self.q_sample(x_start=z_new[:,:4,:,:], t=t, noise=noise)           
        x_noisy = torch.cat((x_noisy, z_new[:,4:,:,:]),dim=1)
        
        # 预测噪声
        if random.uniform(0, 1)<0.2:
            model_output = self.apply_model(x_noisy, hint, t, reference_clip, reference_dino)
        else:
            model_output = self.apply_model(x_noisy, hint, t, reference_clip, reference_dino)

        # 计算损失
        loss = self.get_loss(model_output, noise, mean=False).mean([1, 2, 3])
        loss = loss.mean()
        
        return loss
    
    # 预测噪声
    def apply_model(self, x_noisy, hint, t, reference_clip, reference_dino):

        # 预测 control
        control = self.control_model(x_noisy, hint, t, reference_dino)

        # 调用 PBE
        model_output = self.model(x_noisy, t, reference_clip, control)

        return model_output

    # 优化器
    def configure_optimizers(self):
        # 学习率设置
        lr = self.learning_rate
        params = list(self.control_model.parameters())+list(self.linear.parameters())
        opt = torch.optim.AdamW(params, lr=lr)

        return opt
    
    # 采样
    @torch.no_grad()
    def sample_log(self, batch, ddim_steps=50, ddim_eta=0.):
        z_new, reference, hint = self.get_input(batch)
        x, _, mask, _, _ = super().get_input(batch)
        log = dict()

        # log["reference"] = reference
        # reconstruction = 1. / self.scale_factor * z_new[:,:4,:,:]
        # log["reconstruction"] = self.first_stage_model.decode(reconstruction)
        log["mask"] = mask

        test_model_kwargs = {}
        test_model_kwargs['inpaint_image'] = z_new[:,4:8,:,:]
        test_model_kwargs['inpaint_mask'] = z_new[:,8:,:,:]
        ddim_sampler = DDIMSampler(self)
        shape = (self.channels, self.image_size, self.image_size)
        samples, _ = ddim_sampler.sample(ddim_steps, 
                                        reference.shape[0], 
                                        shape, 
                                        hint, 
                                        reference,
                                        verbose=False, 
                                        eta=ddim_eta,
                                        test_model_kwargs=test_model_kwargs)
        samples = 1. / self.scale_factor * samples
        x_samples = self.first_stage_model.decode(samples[:,:4,:,:])
        # log["samples"] = x_samples

        x = torchvision.transforms.Resize([512, 512])(x)
        reference = torchvision.transforms.Resize([512, 512])(reference)
        x_samples = torchvision.transforms.Resize([512, 512])(x_samples)
        log["grid"] = torch.cat((x, reference, x_samples), dim=2)
        
        return log