File size: 8,231 Bytes
b6e2095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
import torch.nn as nn
from functools import partial
import clip
from einops import rearrange, repeat
from transformers import CLIPTokenizer, CLIPTextModel,CLIPVisionModel,CLIPModel
import kornia
from ldm.modules.x_transformer import Encoder, TransformerWrapper  # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
from .xf import LayerNorm, Transformer
import math

class AbstractEncoder(nn.Module):
    def __init__(self):
        super().__init__()

    def encode(self, *args, **kwargs):
        raise NotImplementedError


class ClassEmbedder(nn.Module):
    def __init__(self, embed_dim, n_classes=1000, key='class'):
        super().__init__()
        self.key = key
        self.embedding = nn.Embedding(n_classes, embed_dim)

    def forward(self, batch, key=None):
        if key is None:
            key = self.key
        # this is for use in crossattn
        c = batch[key][:, None]
        c = self.embedding(c)
        return c


class TransformerEmbedder(AbstractEncoder):
    """Some transformer encoder layers"""
    def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
        super().__init__()
        self.device = device
        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
                                              attn_layers=Encoder(dim=n_embed, depth=n_layer))

    def forward(self, tokens):
        tokens = tokens.to(self.device)  # meh
        z = self.transformer(tokens, return_embeddings=True)
        return z

    def encode(self, x):
        return self(x)


class BERTTokenizer(AbstractEncoder):
    """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
    def __init__(self, device="cuda", vq_interface=True, max_length=77):
        super().__init__()
        from transformers import BertTokenizerFast  # TODO: add to reuquirements
        self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
        self.device = device
        self.vq_interface = vq_interface
        self.max_length = max_length

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        return tokens

    @torch.no_grad()
    def encode(self, text):
        tokens = self(text)
        if not self.vq_interface:
            return tokens
        return None, None, [None, None, tokens]

    def decode(self, text):
        return text


class BERTEmbedder(AbstractEncoder):
    """Uses the BERT tokenizr model and add some transformer encoder layers"""
    def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,

                 device="cuda",use_tokenizer=True, embedding_dropout=0.0):
        super().__init__()
        self.use_tknz_fn = use_tokenizer
        if self.use_tknz_fn:
            self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
        self.device = device
        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
                                              attn_layers=Encoder(dim=n_embed, depth=n_layer),
                                              emb_dropout=embedding_dropout)

    def forward(self, text):
        if self.use_tknz_fn:
            tokens = self.tknz_fn(text)#.to(self.device)
        else:
            tokens = text
        z = self.transformer(tokens, return_embeddings=True)
        return z

    def encode(self, text):
        # output of length 77
        return self(text)


class SpatialRescaler(nn.Module):
    def __init__(self,

                 n_stages=1,

                 method='bilinear',

                 multiplier=0.5,

                 in_channels=3,

                 out_channels=None,

                 bias=False):
        super().__init__()
        self.n_stages = n_stages
        assert self.n_stages >= 0
        assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
        self.multiplier = multiplier
        self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
        self.remap_output = out_channels is not None
        if self.remap_output:
            print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
            self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)

    def forward(self,x):
        for stage in range(self.n_stages):
            x = self.interpolator(x, scale_factor=self.multiplier)


        if self.remap_output:
            x = self.channel_mapper(x)
        return x

    def encode(self, x):
        return self(x)


class FrozenCLIPImageEmbedder(AbstractEncoder):
    """Uses the CLIP transformer encoder for image (from Hugging Face)"""
    def __init__(self, version="openai/clip-vit-large-patch14"):
        super().__init__()
        self.transformer = CLIPVisionModel.from_pretrained(version)
        self.final_ln = LayerNorm(1024)
        self.mapper = Transformer(
                1,
                1024,
                5,
                1,
            )

        self.freeze()

    def freeze(self):
        self.transformer = self.transformer.eval()
        for param in self.parameters():
            param.requires_grad = False
        for param in self.mapper.parameters():
            param.requires_grad = True
        for param in self.final_ln.parameters():
            param.requires_grad = True

    def forward(self, image):
        image = image.to('cuda')
        outputs = self.transformer(pixel_values=image)
        z = outputs.pooler_output
        z = z.unsqueeze(1)
        z = self.mapper(z)
        z = self.final_ln(z)
        return z

    def encode(self, image):
        return self(image)
    

class FrozenCLIPTextEmbedder(AbstractEncoder):
    """

    Uses the CLIP transformer encoder for text (from Hugging Face)

    """
    def __init__(self, version="openai/clip-vit-large-patch14"):
        super().__init__()
        
        self.tokenizer = CLIPTokenizer.from_pretrained(version)
        self.text_model = CLIPTextModel.from_pretrained(version)
        
        #up d_model 1024 to concat with ImageEmbedding
        # self.linear_proj = nn.Linear(768, 1024)
        self.final_ln = nn.LayerNorm(768)
        encoder_layer = nn.TransformerEncoderLayer(
            d_model=768,    
            nhead=8,
            dim_feedforward=2048,
            batch_first=True
        )
        self.mapper = nn.TransformerEncoder(encoder_layer, num_layers=2)
        self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

        self.freeze()

    def freeze(self):
        """

        Freezes the transformer weights while keeping

        the mapper and final layer normalization trainable.

        """
        self.text_model = self.text_model.eval()
        for param in self.parameters():
            param.requires_grad = False
        for param in self.mapper.parameters():
            param.requires_grad = True
        for param in self.final_ln.parameters():
            param.requires_grad = True
        # self.linear_proj.requires_grad = True

    def forward(self, text):
        """

        Encodes text using the tokenizer and transformer.

        Applies mapper and final layer normalization for processing.

        """
        inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
        inputs = {k: v.to('cuda') for k, v in inputs.items()}
        outputs = self.text_model(**inputs)
        
        z = outputs.pooler_output
        # z = self.linear_proj(z)    #768 -> 1024
        z = z.unsqueeze(1)
        z = self.mapper(z)
        z = self.final_ln(z)

        return z
    
    def encode(self, text):
        return self(text)