|
|
|
#include <ATen/TensorUtils.h>
|
|
#include "ROIAlignRotated.h"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace detectron2 {
|
|
|
|
namespace {
|
|
template <typename T>
|
|
struct PreCalc {
|
|
int pos1;
|
|
int pos2;
|
|
int pos3;
|
|
int pos4;
|
|
T w1;
|
|
T w2;
|
|
T w3;
|
|
T w4;
|
|
};
|
|
|
|
template <typename T>
|
|
void pre_calc_for_bilinear_interpolate(
|
|
const int height,
|
|
const int width,
|
|
const int pooled_height,
|
|
const int pooled_width,
|
|
const int iy_upper,
|
|
const int ix_upper,
|
|
T roi_start_h,
|
|
T roi_start_w,
|
|
T bin_size_h,
|
|
T bin_size_w,
|
|
int roi_bin_grid_h,
|
|
int roi_bin_grid_w,
|
|
T roi_center_h,
|
|
T roi_center_w,
|
|
T cos_theta,
|
|
T sin_theta,
|
|
std::vector<PreCalc<T>>& pre_calc) {
|
|
int pre_calc_index = 0;
|
|
for (int ph = 0; ph < pooled_height; ph++) {
|
|
for (int pw = 0; pw < pooled_width; pw++) {
|
|
for (int iy = 0; iy < iy_upper; iy++) {
|
|
const T yy = roi_start_h + ph * bin_size_h +
|
|
static_cast<T>(iy + .5f) * bin_size_h /
|
|
static_cast<T>(roi_bin_grid_h);
|
|
for (int ix = 0; ix < ix_upper; ix++) {
|
|
const T xx = roi_start_w + pw * bin_size_w +
|
|
static_cast<T>(ix + .5f) * bin_size_w /
|
|
static_cast<T>(roi_bin_grid_w);
|
|
|
|
|
|
|
|
|
|
|
|
T y = yy * cos_theta - xx * sin_theta + roi_center_h;
|
|
T x = yy * sin_theta + xx * cos_theta + roi_center_w;
|
|
|
|
if (y < -1.0 || y > height || x < -1.0 || x > width) {
|
|
|
|
PreCalc<T> pc;
|
|
pc.pos1 = 0;
|
|
pc.pos2 = 0;
|
|
pc.pos3 = 0;
|
|
pc.pos4 = 0;
|
|
pc.w1 = 0;
|
|
pc.w2 = 0;
|
|
pc.w3 = 0;
|
|
pc.w4 = 0;
|
|
pre_calc[pre_calc_index] = pc;
|
|
pre_calc_index += 1;
|
|
continue;
|
|
}
|
|
|
|
if (y < 0) {
|
|
y = 0;
|
|
}
|
|
if (x < 0) {
|
|
x = 0;
|
|
}
|
|
|
|
int y_low = (int)y;
|
|
int x_low = (int)x;
|
|
int y_high;
|
|
int x_high;
|
|
|
|
if (y_low >= height - 1) {
|
|
y_high = y_low = height - 1;
|
|
y = (T)y_low;
|
|
} else {
|
|
y_high = y_low + 1;
|
|
}
|
|
|
|
if (x_low >= width - 1) {
|
|
x_high = x_low = width - 1;
|
|
x = (T)x_low;
|
|
} else {
|
|
x_high = x_low + 1;
|
|
}
|
|
|
|
T ly = y - y_low;
|
|
T lx = x - x_low;
|
|
T hy = 1. - ly, hx = 1. - lx;
|
|
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
|
|
|
|
|
|
PreCalc<T> pc;
|
|
pc.pos1 = y_low * width + x_low;
|
|
pc.pos2 = y_low * width + x_high;
|
|
pc.pos3 = y_high * width + x_low;
|
|
pc.pos4 = y_high * width + x_high;
|
|
pc.w1 = w1;
|
|
pc.w2 = w2;
|
|
pc.w3 = w3;
|
|
pc.w4 = w4;
|
|
pre_calc[pre_calc_index] = pc;
|
|
|
|
pre_calc_index += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void bilinear_interpolate_gradient(
|
|
const int height,
|
|
const int width,
|
|
T y,
|
|
T x,
|
|
T& w1,
|
|
T& w2,
|
|
T& w3,
|
|
T& w4,
|
|
int& x_low,
|
|
int& x_high,
|
|
int& y_low,
|
|
int& y_high) {
|
|
|
|
if (y < -1.0 || y > height || x < -1.0 || x > width) {
|
|
|
|
w1 = w2 = w3 = w4 = 0.;
|
|
x_low = x_high = y_low = y_high = -1;
|
|
return;
|
|
}
|
|
|
|
if (y < 0) {
|
|
y = 0;
|
|
}
|
|
|
|
if (x < 0) {
|
|
x = 0;
|
|
}
|
|
|
|
y_low = (int)y;
|
|
x_low = (int)x;
|
|
|
|
if (y_low >= height - 1) {
|
|
y_high = y_low = height - 1;
|
|
y = (T)y_low;
|
|
} else {
|
|
y_high = y_low + 1;
|
|
}
|
|
|
|
if (x_low >= width - 1) {
|
|
x_high = x_low = width - 1;
|
|
x = (T)x_low;
|
|
} else {
|
|
x_high = x_low + 1;
|
|
}
|
|
|
|
T ly = y - y_low;
|
|
T lx = x - x_low;
|
|
T hy = 1. - ly, hx = 1. - lx;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
|
|
|
|
return;
|
|
}
|
|
|
|
template <class T>
|
|
inline void add(T* address, const T& val) {
|
|
*address += val;
|
|
}
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
void ROIAlignRotatedForward(
|
|
const int nthreads,
|
|
const T* input,
|
|
const T& spatial_scale,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int pooled_height,
|
|
const int pooled_width,
|
|
const int sampling_ratio,
|
|
const T* rois,
|
|
T* output) {
|
|
int n_rois = nthreads / channels / pooled_width / pooled_height;
|
|
|
|
|
|
|
|
for (int n = 0; n < n_rois; n++) {
|
|
int index_n = n * channels * pooled_width * pooled_height;
|
|
|
|
const T* current_roi = rois + n * 6;
|
|
int roi_batch_ind = current_roi[0];
|
|
|
|
|
|
|
|
|
|
T offset = (T)0.5;
|
|
T roi_center_w = current_roi[1] * spatial_scale - offset;
|
|
T roi_center_h = current_roi[2] * spatial_scale - offset;
|
|
T roi_width = current_roi[3] * spatial_scale;
|
|
T roi_height = current_roi[4] * spatial_scale;
|
|
T theta = current_roi[5] * M_PI / 180.0;
|
|
T cos_theta = cos(theta);
|
|
T sin_theta = sin(theta);
|
|
|
|
AT_ASSERTM(
|
|
roi_width >= 0 && roi_height >= 0,
|
|
"ROIs in ROIAlignRotated do not have non-negative size!");
|
|
|
|
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
|
|
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
|
|
|
|
|
|
int roi_bin_grid_h = (sampling_ratio > 0)
|
|
? sampling_ratio
|
|
: ceil(roi_height / pooled_height);
|
|
int roi_bin_grid_w =
|
|
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
|
|
|
|
|
|
const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1);
|
|
|
|
|
|
|
|
std::vector<PreCalc<T>> pre_calc(
|
|
roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
|
|
|
|
|
|
|
|
T roi_start_h = -roi_height / 2.0;
|
|
T roi_start_w = -roi_width / 2.0;
|
|
|
|
pre_calc_for_bilinear_interpolate(
|
|
height,
|
|
width,
|
|
pooled_height,
|
|
pooled_width,
|
|
roi_bin_grid_h,
|
|
roi_bin_grid_w,
|
|
roi_start_h,
|
|
roi_start_w,
|
|
bin_size_h,
|
|
bin_size_w,
|
|
roi_bin_grid_h,
|
|
roi_bin_grid_w,
|
|
roi_center_h,
|
|
roi_center_w,
|
|
cos_theta,
|
|
sin_theta,
|
|
pre_calc);
|
|
|
|
for (int c = 0; c < channels; c++) {
|
|
int index_n_c = index_n + c * pooled_width * pooled_height;
|
|
const T* offset_input =
|
|
input + (roi_batch_ind * channels + c) * height * width;
|
|
int pre_calc_index = 0;
|
|
|
|
for (int ph = 0; ph < pooled_height; ph++) {
|
|
for (int pw = 0; pw < pooled_width; pw++) {
|
|
int index = index_n_c + ph * pooled_width + pw;
|
|
|
|
T output_val = 0.;
|
|
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
|
|
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
|
|
PreCalc<T> pc = pre_calc[pre_calc_index];
|
|
output_val += pc.w1 * offset_input[pc.pos1] +
|
|
pc.w2 * offset_input[pc.pos2] +
|
|
pc.w3 * offset_input[pc.pos3] + pc.w4 * offset_input[pc.pos4];
|
|
|
|
pre_calc_index += 1;
|
|
}
|
|
}
|
|
output_val /= count;
|
|
|
|
output[index] = output_val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void ROIAlignRotatedBackward(
|
|
const int nthreads,
|
|
|
|
const T* grad_output,
|
|
const T& spatial_scale,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int pooled_height,
|
|
const int pooled_width,
|
|
const int sampling_ratio,
|
|
T* grad_input,
|
|
const T* rois,
|
|
const int n_stride,
|
|
const int c_stride,
|
|
const int h_stride,
|
|
const int w_stride) {
|
|
for (int index = 0; index < nthreads; index++) {
|
|
|
|
int pw = index % pooled_width;
|
|
int ph = (index / pooled_width) % pooled_height;
|
|
int c = (index / pooled_width / pooled_height) % channels;
|
|
int n = index / pooled_width / pooled_height / channels;
|
|
|
|
const T* current_roi = rois + n * 6;
|
|
int roi_batch_ind = current_roi[0];
|
|
|
|
|
|
|
|
|
|
T offset = (T)0.5;
|
|
T roi_center_w = current_roi[1] * spatial_scale - offset;
|
|
T roi_center_h = current_roi[2] * spatial_scale - offset;
|
|
T roi_width = current_roi[3] * spatial_scale;
|
|
T roi_height = current_roi[4] * spatial_scale;
|
|
T theta = current_roi[5] * M_PI / 180.0;
|
|
T cos_theta = cos(theta);
|
|
T sin_theta = sin(theta);
|
|
|
|
AT_ASSERTM(
|
|
roi_width >= 0 && roi_height >= 0,
|
|
"ROIs in ROIAlignRotated do not have non-negative size!");
|
|
|
|
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
|
|
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
|
|
|
|
T* offset_grad_input =
|
|
grad_input + ((roi_batch_ind * channels + c) * height * width);
|
|
|
|
int output_offset = n * n_stride + c * c_stride;
|
|
const T* offset_grad_output = grad_output + output_offset;
|
|
const T grad_output_this_bin =
|
|
offset_grad_output[ph * h_stride + pw * w_stride];
|
|
|
|
|
|
int roi_bin_grid_h = (sampling_ratio > 0)
|
|
? sampling_ratio
|
|
: ceil(roi_height / pooled_height);
|
|
int roi_bin_grid_w =
|
|
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
|
|
|
|
|
|
|
|
T roi_start_h = -roi_height / 2.0;
|
|
T roi_start_w = -roi_width / 2.0;
|
|
|
|
|
|
const T count = roi_bin_grid_h * roi_bin_grid_w;
|
|
|
|
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
|
|
const T yy = roi_start_h + ph * bin_size_h +
|
|
static_cast<T>(iy + .5f) * bin_size_h /
|
|
static_cast<T>(roi_bin_grid_h);
|
|
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
|
|
const T xx = roi_start_w + pw * bin_size_w +
|
|
static_cast<T>(ix + .5f) * bin_size_w /
|
|
static_cast<T>(roi_bin_grid_w);
|
|
|
|
|
|
T y = yy * cos_theta - xx * sin_theta + roi_center_h;
|
|
T x = yy * sin_theta + xx * cos_theta + roi_center_w;
|
|
|
|
T w1, w2, w3, w4;
|
|
int x_low, x_high, y_low, y_high;
|
|
|
|
bilinear_interpolate_gradient(
|
|
height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high);
|
|
|
|
T g1 = grad_output_this_bin * w1 / count;
|
|
T g2 = grad_output_this_bin * w2 / count;
|
|
T g3 = grad_output_this_bin * w3 / count;
|
|
T g4 = grad_output_this_bin * w4 / count;
|
|
|
|
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
|
|
|
|
add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
|
|
add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
|
|
add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
|
|
add(offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
at::Tensor ROIAlignRotated_forward_cpu(
|
|
const at::Tensor& input,
|
|
const at::Tensor& rois,
|
|
const float spatial_scale,
|
|
const int pooled_height,
|
|
const int pooled_width,
|
|
const int sampling_ratio) {
|
|
AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor");
|
|
AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
|
|
|
|
at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
|
|
|
|
at::CheckedFrom c = "ROIAlign_forward_cpu";
|
|
at::checkAllSameType(c, {input_t, rois_t});
|
|
|
|
auto num_rois = rois.size(0);
|
|
auto channels = input.size(1);
|
|
auto height = input.size(2);
|
|
auto width = input.size(3);
|
|
|
|
at::Tensor output = at::zeros(
|
|
{num_rois, channels, pooled_height, pooled_width}, input.options());
|
|
|
|
auto output_size = num_rois * pooled_height * pooled_width * channels;
|
|
|
|
if (output.numel() == 0) {
|
|
return output;
|
|
}
|
|
|
|
auto input_ = input.contiguous(), rois_ = rois.contiguous();
|
|
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
|
input.scalar_type(), "ROIAlignRotated_forward", [&] {
|
|
ROIAlignRotatedForward<scalar_t>(
|
|
output_size,
|
|
input_.data_ptr<scalar_t>(),
|
|
spatial_scale,
|
|
channels,
|
|
height,
|
|
width,
|
|
pooled_height,
|
|
pooled_width,
|
|
sampling_ratio,
|
|
rois_.data_ptr<scalar_t>(),
|
|
output.data_ptr<scalar_t>());
|
|
});
|
|
return output;
|
|
}
|
|
|
|
at::Tensor ROIAlignRotated_backward_cpu(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& rois,
|
|
const float spatial_scale,
|
|
const int pooled_height,
|
|
const int pooled_width,
|
|
const int batch_size,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int sampling_ratio) {
|
|
AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor");
|
|
AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
|
|
|
|
at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
|
|
|
|
at::CheckedFrom c = "ROIAlignRotated_backward_cpu";
|
|
at::checkAllSameType(c, {grad_t, rois_t});
|
|
|
|
at::Tensor grad_input =
|
|
at::zeros({batch_size, channels, height, width}, grad.options());
|
|
|
|
|
|
if (grad.numel() == 0) {
|
|
return grad_input;
|
|
}
|
|
|
|
|
|
int n_stride = grad.stride(0);
|
|
int c_stride = grad.stride(1);
|
|
int h_stride = grad.stride(2);
|
|
int w_stride = grad.stride(3);
|
|
|
|
auto rois_ = rois.contiguous();
|
|
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
|
grad.scalar_type(), "ROIAlignRotated_forward", [&] {
|
|
ROIAlignRotatedBackward<scalar_t>(
|
|
grad.numel(),
|
|
grad.data_ptr<scalar_t>(),
|
|
spatial_scale,
|
|
channels,
|
|
height,
|
|
width,
|
|
pooled_height,
|
|
pooled_width,
|
|
sampling_ratio,
|
|
grad_input.data_ptr<scalar_t>(),
|
|
rois_.data_ptr<scalar_t>(),
|
|
n_stride,
|
|
c_stride,
|
|
h_stride,
|
|
w_stride);
|
|
});
|
|
return grad_input;
|
|
}
|
|
|
|
}
|
|
|