|
import pdb |
|
from pathlib import Path |
|
import sys |
|
import os |
|
import onnxruntime as ort |
|
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() |
|
sys.path.insert(0, str(PROJECT_ROOT)) |
|
from parsing_api import onnx_inference |
|
import torch |
|
import requests |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Parsing: |
|
def __init__(self, gpu_id: int): |
|
self.gpu_id = gpu_id |
|
torch.cuda.set_device(gpu_id) |
|
|
|
|
|
atr_url = 'https://huggingface.co/basso4/humanparsing/resolve/main/parsing_atr.onnx' |
|
lip_url = 'https://huggingface.co/basso4/humanparsing/resolve/main/parsing_lip.onnx' |
|
|
|
|
|
model_dir = Path.home() / '.cache/humanparsing_models' |
|
model_dir.mkdir(parents=True, exist_ok=True) |
|
atr_path = model_dir / 'parsing_atr.onnx' |
|
lip_path = model_dir / 'parsing_lip.onnx' |
|
|
|
|
|
self.download_model(atr_url, atr_path) |
|
self.download_model(lip_url, lip_path) |
|
|
|
|
|
session_options = ort.SessionOptions() |
|
session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL |
|
session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL |
|
session_options.add_session_config_entry('gpu_id', str(gpu_id)) |
|
|
|
|
|
self.session = ort.InferenceSession(str(atr_path), sess_options=session_options, providers=['CPUExecutionProvider']) |
|
self.lip_session = ort.InferenceSession(str(lip_path), sess_options=session_options, providers=['CPUExecutionProvider']) |
|
|
|
def download_model(self, url, path): |
|
|
|
if not path.exists(): |
|
print(f"Downloading model from {url}...") |
|
response = requests.get(url, stream=True) |
|
response.raise_for_status() |
|
with open(path, 'wb') as file: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
file.write(chunk) |
|
print(f"Model downloaded and saved to {path}") |
|
|
|
def __call__(self, input_image): |
|
|
|
parsed_image, face_mask = onnx_inference(self.session, self.lip_session, input_image) |
|
return parsed_image, face_mask |