Last commit not found
import pdb | |
from pathlib import Path | |
import sys | |
import os | |
import onnxruntime as ort | |
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() | |
sys.path.insert(0, str(PROJECT_ROOT)) | |
from parsing_api import onnx_inference | |
import torch | |
import requests | |
# class Parsing: | |
# def __init__(self, gpu_id: int): | |
# self.gpu_id = gpu_id | |
# torch.cuda.set_device(gpu_id) | |
# session_options = ort.SessionOptions() | |
# session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL | |
# session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL | |
# session_options.add_session_config_entry('gpu_id', str(gpu_id)) | |
# self.session = ort.InferenceSession(os.path.join(Path(__file__).absolute().parents[2].absolute(), 'ckpt/humanparsing/parsing_atr.onnx'), | |
# sess_options=session_options, providers=['CPUExecutionProvider']) | |
# self.lip_session = ort.InferenceSession(os.path.join(Path(__file__).absolute().parents[2].absolute(), 'ckpt/humanparsing/parsing_lip.onnx'), | |
# sess_options=session_options, providers=['CPUExecutionProvider']) | |
# def __call__(self, input_image): | |
# # torch.cuda.set_device(self.gpu_id) | |
# parsed_image, face_mask = onnx_inference(self.session, self.lip_session, input_image) | |
# return parsed_image, face_mask | |
class Parsing: | |
def __init__(self, gpu_id: int): | |
self.gpu_id = gpu_id | |
torch.cuda.set_device(gpu_id) | |
# Define the URLs for the models on Hugging Face | |
atr_url = 'https://huggingface.co/basso4/humanparsing/resolve/main/parsing_atr.onnx' | |
lip_url = 'https://huggingface.co/basso4/humanparsing/resolve/main/parsing_lip.onnx' | |
# Define local paths for storing the models | |
model_dir = Path.home() / '.cache/humanparsing_models' | |
model_dir.mkdir(parents=True, exist_ok=True) | |
atr_path = model_dir / 'parsing_atr.onnx' | |
lip_path = model_dir / 'parsing_lip.onnx' | |
# Download models if they don't already exist locally | |
self.download_model(atr_url, atr_path) | |
self.download_model(lip_url, lip_path) | |
# Configure ONNX Runtime session options | |
session_options = ort.SessionOptions() | |
session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL | |
session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL | |
session_options.add_session_config_entry('gpu_id', str(gpu_id)) | |
# Initialize ONNX Inference Sessions | |
self.session = ort.InferenceSession(str(atr_path), sess_options=session_options, providers=['CPUExecutionProvider']) | |
self.lip_session = ort.InferenceSession(str(lip_path), sess_options=session_options, providers=['CPUExecutionProvider']) | |
def download_model(self, url, path): | |
# Download the model if it doesn't exist at the specified path | |
if not path.exists(): | |
print(f"Downloading model from {url}...") | |
response = requests.get(url, stream=True) | |
response.raise_for_status() | |
with open(path, 'wb') as file: | |
for chunk in response.iter_content(chunk_size=8192): | |
file.write(chunk) | |
print(f"Model downloaded and saved to {path}") | |
def __call__(self, input_image): | |
# Perform inference using both ONNX models and return the results | |
parsed_image, face_mask = onnx_inference(self.session, self.lip_session, input_image) | |
return parsed_image, face_mask |