|
|
|
|
|
import concurrent.futures
|
|
import logging
|
|
import numpy as np
|
|
import time
|
|
import weakref
|
|
from typing import List, Mapping, Optional
|
|
import torch
|
|
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
|
|
|
import detectron2.utils.comm as comm
|
|
from detectron2.utils.events import EventStorage, get_event_storage
|
|
from detectron2.utils.logger import _log_api_usage
|
|
|
|
__all__ = ["HookBase", "TrainerBase", "SimpleTrainer", "AMPTrainer"]
|
|
|
|
|
|
class HookBase:
|
|
"""
|
|
Base class for hooks that can be registered with :class:`TrainerBase`.
|
|
|
|
Each hook can implement 4 methods. The way they are called is demonstrated
|
|
in the following snippet:
|
|
::
|
|
hook.before_train()
|
|
for iter in range(start_iter, max_iter):
|
|
hook.before_step()
|
|
trainer.run_step()
|
|
hook.after_step()
|
|
iter += 1
|
|
hook.after_train()
|
|
|
|
Notes:
|
|
1. In the hook method, users can access ``self.trainer`` to access more
|
|
properties about the context (e.g., model, current iteration, or config
|
|
if using :class:`DefaultTrainer`).
|
|
|
|
2. A hook that does something in :meth:`before_step` can often be
|
|
implemented equivalently in :meth:`after_step`.
|
|
If the hook takes non-trivial time, it is strongly recommended to
|
|
implement the hook in :meth:`after_step` instead of :meth:`before_step`.
|
|
The convention is that :meth:`before_step` should only take negligible time.
|
|
|
|
Following this convention will allow hooks that do care about the difference
|
|
between :meth:`before_step` and :meth:`after_step` (e.g., timer) to
|
|
function properly.
|
|
|
|
"""
|
|
|
|
trainer: "TrainerBase" = None
|
|
"""
|
|
A weak reference to the trainer object. Set by the trainer when the hook is registered.
|
|
"""
|
|
|
|
def before_train(self):
|
|
"""
|
|
Called before the first iteration.
|
|
"""
|
|
pass
|
|
|
|
def after_train(self):
|
|
"""
|
|
Called after the last iteration.
|
|
"""
|
|
pass
|
|
|
|
def before_step(self):
|
|
"""
|
|
Called before each iteration.
|
|
"""
|
|
pass
|
|
|
|
def after_backward(self):
|
|
"""
|
|
Called after the backward pass of each iteration.
|
|
"""
|
|
pass
|
|
|
|
def after_step(self):
|
|
"""
|
|
Called after each iteration.
|
|
"""
|
|
pass
|
|
|
|
def state_dict(self):
|
|
"""
|
|
Hooks are stateless by default, but can be made checkpointable by
|
|
implementing `state_dict` and `load_state_dict`.
|
|
"""
|
|
return {}
|
|
|
|
|
|
class TrainerBase:
|
|
"""
|
|
Base class for iterative trainer with hooks.
|
|
|
|
The only assumption we made here is: the training runs in a loop.
|
|
A subclass can implement what the loop is.
|
|
We made no assumptions about the existence of dataloader, optimizer, model, etc.
|
|
|
|
Attributes:
|
|
iter(int): the current iteration.
|
|
|
|
start_iter(int): The iteration to start with.
|
|
By convention the minimum possible value is 0.
|
|
|
|
max_iter(int): The iteration to end training.
|
|
|
|
storage(EventStorage): An EventStorage that's opened during the course of training.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self._hooks: List[HookBase] = []
|
|
self.iter: int = 0
|
|
self.start_iter: int = 0
|
|
self.max_iter: int
|
|
self.storage: EventStorage
|
|
_log_api_usage("trainer." + self.__class__.__name__)
|
|
|
|
def register_hooks(self, hooks: List[Optional[HookBase]]) -> None:
|
|
"""
|
|
Register hooks to the trainer. The hooks are executed in the order
|
|
they are registered.
|
|
|
|
Args:
|
|
hooks (list[Optional[HookBase]]): list of hooks
|
|
"""
|
|
hooks = [h for h in hooks if h is not None]
|
|
for h in hooks:
|
|
assert isinstance(h, HookBase)
|
|
|
|
|
|
|
|
|
|
h.trainer = weakref.proxy(self)
|
|
self._hooks.extend(hooks)
|
|
|
|
def train(self, start_iter: int, max_iter: int):
|
|
"""
|
|
Args:
|
|
start_iter, max_iter (int): See docs above
|
|
"""
|
|
logger = logging.getLogger(__name__)
|
|
logger.info("Starting training from iteration {}".format(start_iter))
|
|
|
|
self.iter = self.start_iter = start_iter
|
|
self.max_iter = max_iter
|
|
|
|
with EventStorage(start_iter) as self.storage:
|
|
try:
|
|
self.before_train()
|
|
for self.iter in range(start_iter, max_iter):
|
|
self.before_step()
|
|
self.run_step()
|
|
self.after_step()
|
|
|
|
|
|
|
|
self.iter += 1
|
|
except Exception:
|
|
logger.exception("Exception during training:")
|
|
raise
|
|
finally:
|
|
self.after_train()
|
|
|
|
def before_train(self):
|
|
for h in self._hooks:
|
|
h.before_train()
|
|
|
|
def after_train(self):
|
|
self.storage.iter = self.iter
|
|
for h in self._hooks:
|
|
h.after_train()
|
|
|
|
def before_step(self):
|
|
|
|
|
|
self.storage.iter = self.iter
|
|
|
|
for h in self._hooks:
|
|
h.before_step()
|
|
|
|
def after_backward(self):
|
|
for h in self._hooks:
|
|
h.after_backward()
|
|
|
|
def after_step(self):
|
|
for h in self._hooks:
|
|
h.after_step()
|
|
|
|
def run_step(self):
|
|
raise NotImplementedError
|
|
|
|
def state_dict(self):
|
|
ret = {"iteration": self.iter}
|
|
hooks_state = {}
|
|
for h in self._hooks:
|
|
sd = h.state_dict()
|
|
if sd:
|
|
name = type(h).__qualname__
|
|
if name in hooks_state:
|
|
|
|
continue
|
|
hooks_state[name] = sd
|
|
if hooks_state:
|
|
ret["hooks"] = hooks_state
|
|
return ret
|
|
|
|
def load_state_dict(self, state_dict):
|
|
logger = logging.getLogger(__name__)
|
|
self.iter = state_dict["iteration"]
|
|
for key, value in state_dict.get("hooks", {}).items():
|
|
for h in self._hooks:
|
|
try:
|
|
name = type(h).__qualname__
|
|
except AttributeError:
|
|
continue
|
|
if name == key:
|
|
h.load_state_dict(value)
|
|
break
|
|
else:
|
|
logger.warning(f"Cannot find the hook '{key}', its state_dict is ignored.")
|
|
|
|
|
|
class SimpleTrainer(TrainerBase):
|
|
"""
|
|
A simple trainer for the most common type of task:
|
|
single-cost single-optimizer single-data-source iterative optimization,
|
|
optionally using data-parallelism.
|
|
It assumes that every step, you:
|
|
|
|
1. Compute the loss with a data from the data_loader.
|
|
2. Compute the gradients with the above loss.
|
|
3. Update the model with the optimizer.
|
|
|
|
All other tasks during training (checkpointing, logging, evaluation, LR schedule)
|
|
are maintained by hooks, which can be registered by :meth:`TrainerBase.register_hooks`.
|
|
|
|
If you want to do anything fancier than this,
|
|
either subclass TrainerBase and implement your own `run_step`,
|
|
or write your own training loop.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model,
|
|
data_loader,
|
|
optimizer,
|
|
gather_metric_period=1,
|
|
zero_grad_before_forward=False,
|
|
async_write_metrics=False,
|
|
):
|
|
"""
|
|
Args:
|
|
model: a torch Module. Takes a data from data_loader and returns a
|
|
dict of losses.
|
|
data_loader: an iterable. Contains data to be used to call model.
|
|
optimizer: a torch optimizer.
|
|
gather_metric_period: an int. Every gather_metric_period iterations
|
|
the metrics are gathered from all the ranks to rank 0 and logged.
|
|
zero_grad_before_forward: whether to zero the gradients before the forward.
|
|
async_write_metrics: bool. If True, then write metrics asynchronously to improve
|
|
training speed
|
|
"""
|
|
super().__init__()
|
|
|
|
"""
|
|
We set the model to training mode in the trainer.
|
|
However it's valid to train a model that's in eval mode.
|
|
If you want your model (or a submodule of it) to behave
|
|
like evaluation during training, you can overwrite its train() method.
|
|
"""
|
|
model.train()
|
|
|
|
self.model = model
|
|
self.data_loader = data_loader
|
|
|
|
self._data_loader_iter_obj = None
|
|
self.optimizer = optimizer
|
|
self.gather_metric_period = gather_metric_period
|
|
self.zero_grad_before_forward = zero_grad_before_forward
|
|
self.async_write_metrics = async_write_metrics
|
|
|
|
|
|
self.concurrent_executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
|
|
|
|
def run_step(self):
|
|
"""
|
|
Implement the standard training logic described above.
|
|
"""
|
|
assert self.model.training, "[SimpleTrainer] model was changed to eval mode!"
|
|
start = time.perf_counter()
|
|
"""
|
|
If you want to do something with the data, you can wrap the dataloader.
|
|
"""
|
|
data = next(self._data_loader_iter)
|
|
data_time = time.perf_counter() - start
|
|
|
|
if self.zero_grad_before_forward:
|
|
"""
|
|
If you need to accumulate gradients or do something similar, you can
|
|
wrap the optimizer with your custom `zero_grad()` method.
|
|
"""
|
|
self.optimizer.zero_grad()
|
|
|
|
"""
|
|
If you want to do something with the losses, you can wrap the model.
|
|
"""
|
|
loss_dict = self.model(data)
|
|
if isinstance(loss_dict, torch.Tensor):
|
|
losses = loss_dict
|
|
loss_dict = {"total_loss": loss_dict}
|
|
else:
|
|
losses = sum(loss_dict.values())
|
|
if not self.zero_grad_before_forward:
|
|
"""
|
|
If you need to accumulate gradients or do something similar, you can
|
|
wrap the optimizer with your custom `zero_grad()` method.
|
|
"""
|
|
self.optimizer.zero_grad()
|
|
losses.backward()
|
|
|
|
self.after_backward()
|
|
|
|
if self.async_write_metrics:
|
|
|
|
self.concurrent_executor.submit(
|
|
self._write_metrics, loss_dict, data_time, iter=self.iter
|
|
)
|
|
else:
|
|
self._write_metrics(loss_dict, data_time)
|
|
|
|
"""
|
|
If you need gradient clipping/scaling or other processing, you can
|
|
wrap the optimizer with your custom `step()` method. But it is
|
|
suboptimal as explained in https://arxiv.org/abs/2006.15704 Sec 3.2.4
|
|
"""
|
|
self.optimizer.step()
|
|
|
|
@property
|
|
def _data_loader_iter(self):
|
|
|
|
if self._data_loader_iter_obj is None:
|
|
self._data_loader_iter_obj = iter(self.data_loader)
|
|
return self._data_loader_iter_obj
|
|
|
|
def reset_data_loader(self, data_loader_builder):
|
|
"""
|
|
Delete and replace the current data loader with a new one, which will be created
|
|
by calling `data_loader_builder` (without argument).
|
|
"""
|
|
del self.data_loader
|
|
data_loader = data_loader_builder()
|
|
self.data_loader = data_loader
|
|
self._data_loader_iter_obj = None
|
|
|
|
def _write_metrics(
|
|
self,
|
|
loss_dict: Mapping[str, torch.Tensor],
|
|
data_time: float,
|
|
prefix: str = "",
|
|
iter: Optional[int] = None,
|
|
) -> None:
|
|
logger = logging.getLogger(__name__)
|
|
|
|
iter = self.iter if iter is None else iter
|
|
if (iter + 1) % self.gather_metric_period == 0:
|
|
try:
|
|
SimpleTrainer.write_metrics(loss_dict, data_time, iter, prefix)
|
|
except Exception:
|
|
logger.exception("Exception in writing metrics: ")
|
|
raise
|
|
|
|
@staticmethod
|
|
def write_metrics(
|
|
loss_dict: Mapping[str, torch.Tensor],
|
|
data_time: float,
|
|
cur_iter: int,
|
|
prefix: str = "",
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
loss_dict (dict): dict of scalar losses
|
|
data_time (float): time taken by the dataloader iteration
|
|
prefix (str): prefix for logging keys
|
|
"""
|
|
metrics_dict = {k: v.detach().cpu().item() for k, v in loss_dict.items()}
|
|
metrics_dict["data_time"] = data_time
|
|
|
|
storage = get_event_storage()
|
|
|
|
storage.put_scalar("rank_data_time", data_time, cur_iter=cur_iter)
|
|
|
|
|
|
|
|
|
|
all_metrics_dict = comm.gather(metrics_dict)
|
|
|
|
if comm.is_main_process():
|
|
|
|
|
|
data_time = np.max([x.pop("data_time") for x in all_metrics_dict])
|
|
storage.put_scalar("data_time", data_time, cur_iter=cur_iter)
|
|
|
|
|
|
metrics_dict = {
|
|
k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys()
|
|
}
|
|
total_losses_reduced = sum(metrics_dict.values())
|
|
if not np.isfinite(total_losses_reduced):
|
|
raise FloatingPointError(
|
|
f"Loss became infinite or NaN at iteration={cur_iter}!\n"
|
|
f"loss_dict = {metrics_dict}"
|
|
)
|
|
|
|
storage.put_scalar(
|
|
"{}total_loss".format(prefix), total_losses_reduced, cur_iter=cur_iter
|
|
)
|
|
if len(metrics_dict) > 1:
|
|
storage.put_scalars(cur_iter=cur_iter, **metrics_dict)
|
|
|
|
def state_dict(self):
|
|
ret = super().state_dict()
|
|
ret["optimizer"] = self.optimizer.state_dict()
|
|
return ret
|
|
|
|
def load_state_dict(self, state_dict):
|
|
super().load_state_dict(state_dict)
|
|
self.optimizer.load_state_dict(state_dict["optimizer"])
|
|
|
|
def after_train(self):
|
|
super().after_train()
|
|
self.concurrent_executor.shutdown(wait=True)
|
|
|
|
|
|
class AMPTrainer(SimpleTrainer):
|
|
"""
|
|
Like :class:`SimpleTrainer`, but uses PyTorch's native automatic mixed precision
|
|
in the training loop.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model,
|
|
data_loader,
|
|
optimizer,
|
|
gather_metric_period=1,
|
|
zero_grad_before_forward=False,
|
|
grad_scaler=None,
|
|
precision: torch.dtype = torch.float16,
|
|
log_grad_scaler: bool = False,
|
|
async_write_metrics=False,
|
|
):
|
|
"""
|
|
Args:
|
|
model, data_loader, optimizer, gather_metric_period, zero_grad_before_forward,
|
|
async_write_metrics: same as in :class:`SimpleTrainer`.
|
|
grad_scaler: torch GradScaler to automatically scale gradients.
|
|
precision: torch.dtype as the target precision to cast to in computations
|
|
"""
|
|
unsupported = "AMPTrainer does not support single-process multi-device training!"
|
|
if isinstance(model, DistributedDataParallel):
|
|
assert not (model.device_ids and len(model.device_ids) > 1), unsupported
|
|
assert not isinstance(model, DataParallel), unsupported
|
|
|
|
super().__init__(
|
|
model, data_loader, optimizer, gather_metric_period, zero_grad_before_forward
|
|
)
|
|
|
|
if grad_scaler is None:
|
|
from torch.cuda.amp import GradScaler
|
|
|
|
grad_scaler = GradScaler()
|
|
self.grad_scaler = grad_scaler
|
|
self.precision = precision
|
|
self.log_grad_scaler = log_grad_scaler
|
|
|
|
def run_step(self):
|
|
"""
|
|
Implement the AMP training logic.
|
|
"""
|
|
assert self.model.training, "[AMPTrainer] model was changed to eval mode!"
|
|
assert torch.cuda.is_available(), "[AMPTrainer] CUDA is required for AMP training!"
|
|
from torch.cuda.amp import autocast
|
|
|
|
start = time.perf_counter()
|
|
data = next(self._data_loader_iter)
|
|
data_time = time.perf_counter() - start
|
|
|
|
if self.zero_grad_before_forward:
|
|
self.optimizer.zero_grad()
|
|
with autocast(dtype=self.precision):
|
|
loss_dict = self.model(data)
|
|
if isinstance(loss_dict, torch.Tensor):
|
|
losses = loss_dict
|
|
loss_dict = {"total_loss": loss_dict}
|
|
else:
|
|
losses = sum(loss_dict.values())
|
|
|
|
if not self.zero_grad_before_forward:
|
|
self.optimizer.zero_grad()
|
|
|
|
self.grad_scaler.scale(losses).backward()
|
|
|
|
if self.log_grad_scaler:
|
|
storage = get_event_storage()
|
|
storage.put_scalar("[metric]grad_scaler", self.grad_scaler.get_scale())
|
|
|
|
self.after_backward()
|
|
|
|
if self.async_write_metrics:
|
|
|
|
self.concurrent_executor.submit(
|
|
self._write_metrics, loss_dict, data_time, iter=self.iter
|
|
)
|
|
else:
|
|
self._write_metrics(loss_dict, data_time)
|
|
|
|
self.grad_scaler.step(self.optimizer)
|
|
self.grad_scaler.update()
|
|
|
|
def state_dict(self):
|
|
ret = super().state_dict()
|
|
ret["grad_scaler"] = self.grad_scaler.state_dict()
|
|
return ret
|
|
|
|
def load_state_dict(self, state_dict):
|
|
super().load_state_dict(state_dict)
|
|
self.grad_scaler.load_state_dict(state_dict["grad_scaler"])
|
|
|