Baptiste Canton
commited on
Commit
·
3825bf0
1
Parent(s):
e828fe3
pit
Browse files
app2.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
|
3 |
+
import logging
|
4 |
+
import gradio as gr
|
5 |
+
from pillow_heif import register_heif_opener
|
6 |
+
|
7 |
+
register_heif_opener()
|
8 |
+
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
|
12 |
+
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG")
|
13 |
+
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", 200))
|
14 |
+
# https://huggingface.co/models?pipeline_tag=image-to-text&sort=likes
|
15 |
+
MODEL = os.getenv("MODEL", "Salesforce/blip-image-captioning-large")
|
16 |
+
|
17 |
+
logging.basicConfig(level=LOG_LEVEL)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
logger.info("Loading model...")
|
22 |
+
# simpler model: "ydshieh/vit-gpt2-coco-en"
|
23 |
+
captioner = pipeline(
|
24 |
+
"image-to-text",
|
25 |
+
model=MODEL,
|
26 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
27 |
+
)
|
28 |
+
logger.info("Done loading model.")
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def graptioner(img):
|
33 |
+
result = captioner(img)
|
34 |
+
caption = result[0]["generated_text"]
|
35 |
+
return caption
|
36 |
+
|
37 |
+
iface = gr.Interface(
|
38 |
+
fn=graptioner,
|
39 |
+
inputs=gr.components.Image(type="pil"),
|
40 |
+
outputs=["text"],
|
41 |
+
allow_flagging="never",
|
42 |
+
# analytics_enabled=False
|
43 |
+
)
|
44 |
+
|
45 |
+
iface.launch()
|
app3.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import io
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import requests
|
8 |
+
from PIL import Image
|
9 |
+
from pillow_heif import register_heif_opener
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
|
13 |
+
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG")
|
14 |
+
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", 200))
|
15 |
+
# https://huggingface.co/models?pipeline_tag=image-to-text&sort=likes
|
16 |
+
MODEL = os.getenv("MODEL", "Salesforce/blip-image-captioning-large")
|
17 |
+
|
18 |
+
register_heif_opener()
|
19 |
+
|
20 |
+
logging.basicConfig(level=LOG_LEVEL)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
def setup_args():
|
25 |
+
parser = argparse.ArgumentParser()
|
26 |
+
parser.add_argument("--share", action="store_true", default=False)
|
27 |
+
return parser.parse_args()
|
28 |
+
|
29 |
+
|
30 |
+
def load_image_from_url(url):
|
31 |
+
try:
|
32 |
+
response = requests.get(url)
|
33 |
+
if not response.ok:
|
34 |
+
raise Exception("Error downloading image")
|
35 |
+
image = Image.open(io.BytesIO(response.content))
|
36 |
+
return image
|
37 |
+
except Exception as e:
|
38 |
+
logger.error("Error loading image from URL: %s", e)
|
39 |
+
raise
|
40 |
+
|
41 |
+
|
42 |
+
def graptioner(image, url):
|
43 |
+
if url and url.strip():
|
44 |
+
image = load_image_from_url(url)
|
45 |
+
width, height = image.size
|
46 |
+
if width < 1 or height < 1:
|
47 |
+
raise Exception("Invalid image")
|
48 |
+
logger.debug("Loaded image size: %sx%s", width, height)
|
49 |
+
# generate caption
|
50 |
+
result = captioner(image)
|
51 |
+
return result[0]["generated_text"]
|
52 |
+
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
args = setup_args()
|
56 |
+
logger.info("Loading model...")
|
57 |
+
# simpler model: "ydshieh/vit-gpt2-coco-en"
|
58 |
+
captioner = pipeline(
|
59 |
+
"image-to-text",
|
60 |
+
model=MODEL,
|
61 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
62 |
+
)
|
63 |
+
logger.info("Done loading model.")
|
64 |
+
iface = gr.Interface(
|
65 |
+
fn=graptioner,
|
66 |
+
inputs=[
|
67 |
+
gr.Image(type="pil", label="Upload Image"),
|
68 |
+
gr.Textbox(lines=1, placeholder="Image URL", label="Image URL"),
|
69 |
+
],
|
70 |
+
outputs=["text"],
|
71 |
+
)
|
72 |
+
iface.launch(share=args.share)
|