EEG-Seizure-Detection-2 / client_server_interface.py
batuergun's picture
Revert "test without exec"
835e258
"Client-server interface custom implementation for seizure detection models."
from common import SEIZURE_DETECTION_MODEL_PATH
from concrete import fhe
from seizure_detection import SeizureDetector
class FHEServer:
"""Server interface to run a FHE circuit for seizure detection."""
def __init__(self, model_path):
"""Initialize the FHE interface.
Args:
model_path (Path): The path to the directory where the circuit is saved.
"""
self.model_path = model_path
# Load the FHE circuit
self.server = fhe.Server.load(self.model_path / "server.zip")
def run(self, serialized_encrypted_image, serialized_evaluation_keys):
"""Run seizure detection on the server over an encrypted image.
Args:
serialized_encrypted_image (bytes): The encrypted and serialized image.
serialized_evaluation_keys (bytes): The serialized evaluation keys.
Returns:
bytes: The encrypted boolean output indicating seizure detection.
"""
# Deserialize the encrypted input image and the evaluation keys
encrypted_image = fhe.Value.deserialize(serialized_encrypted_image)
evaluation_keys = fhe.EvaluationKeys.deserialize(serialized_evaluation_keys)
# Execute the seizure detection in FHE
encrypted_output = self.server.run(encrypted_image, evaluation_keys=evaluation_keys)
# Serialize the encrypted output
serialized_encrypted_output = encrypted_output.serialize()
return serialized_encrypted_output
class FHEDev:
"""Development interface to save and load the seizure detection model."""
def __init__(self, seizure_detector, model_path):
"""Initialize the FHE interface.
Args:
seizure_detector (SeizureDetector): The seizure detection model to use in the FHE interface.
model_path (str): The path to the directory where the circuit is saved.
"""
self.seizure_detector = seizure_detector
self.model_path = model_path
self.model_path.mkdir(parents=True, exist_ok=True)
def save(self):
"""Export all needed artifacts for the client and server interfaces."""
assert self.seizure_detector.fhe_circuit is not None, (
"The model must be compiled before saving it."
)
# Save the circuit for the server, using the via_mlir in order to handle cross-platform
# execution
path_circuit_server = self.model_path / "server.zip"
self.seizure_detector.fhe_circuit.server.save(path_circuit_server, via_mlir=True)
# Save the circuit for the client
path_circuit_client = self.model_path / "client.zip"
self.seizure_detector.fhe_circuit.client.save(path_circuit_client)
class FHEClient:
"""Client interface to encrypt and decrypt FHE data associated to a SeizureDetector."""
def __init__(self, key_dir=None):
"""Initialize the FHE interface.
Args:
model_path (Path): The path to the directory where the circuit is saved.
key_dir (Path): The path to the directory where the keys are stored. Default to None.
"""
self.model_path = SEIZURE_DETECTION_MODEL_PATH
self.key_dir = key_dir
# If model_path does not exist raise
assert self.model_path.exists(), f"{self.model_path} does not exist. Please specify a valid path."
# Load the client
self.client = fhe.Client.load(self.model_path / "client.zip", self.key_dir)
# Instantiate the seizure detector
self.seizure_detector = SeizureDetector()
def generate_private_and_evaluation_keys(self, force=False):
"""Generate the private and evaluation keys.
Args:
force (bool): If True, regenerate the keys even if they already exist.
"""
self.client.keygen(force)
def get_serialized_evaluation_keys(self):
"""Get the serialized evaluation keys.
Returns:
bytes: The evaluation keys.
"""
return self.client.evaluation_keys.serialize()
def encrypt_serialize(self, input_image):
"""Encrypt and serialize the input image in the clear.
Args:
input_image (numpy.ndarray): The image to encrypt and serialize.
Returns:
bytes: The pre-processed, encrypted and serialized image.
"""
# Encrypt the image
encrypted_image = self.client.encrypt(input_image)
# Serialize the encrypted image to be sent to the server
serialized_encrypted_image = encrypted_image.serialize()
return serialized_encrypted_image
def deserialize_decrypt_post_process(self, serialized_encrypted_output):
"""Deserialize, decrypt and post-process the output in the clear.
Args:
serialized_encrypted_output (bytes): The serialized and encrypted output.
Returns:
bool: The decrypted and deserialized boolean indicating seizure detection.
"""
# Deserialize the encrypted output
encrypted_output = fhe.Value.deserialize(serialized_encrypted_output)
# Decrypt the output
output = self.client.decrypt(encrypted_output)
# Post-process the output (if needed)
seizure_detected = self.seizure_detector.post_processing(output)
return seizure_detected