shipnet / app.py
Mehmet Batuhan Duman
Changes
1f00d4e
raw
history blame
3.88 kB
import cv2
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import os
import time
import io
import base64
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(64, 64, 3, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.25)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(64 * 5 * 5, 200)
self.fc2 = nn.Linear(200, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
model2 = None
model2_path = "model4.pth"
if os.path.exists(model2_path):
state_dict = torch.load(model2_path, map_location=torch.device('cpu'))
new_state_dict = {}
for key, value in state_dict.items():
new_key = key.replace("module.", "")
new_state_dict[new_key] = value
model = Net2()
model.load_state_dict(new_state_dict)
model.eval()
else:
print("Model file not found at", model2_path)
def process_image(input_image):
image = Image.open(io.BytesIO(input_image)).convert("RGB")
start_time = time.time()
heatmap = scanmap(np.array(image), model)
elapsed_time = time.time() - start_time
heatmap_img = Image.fromarray(np.uint8(plt.cm.hot(heatmap) * 255)).convert('RGB')
heatmap_img = heatmap_img.resize(image.size)
return image, heatmap_img, int(elapsed_time)
def scanmap(image_np, model):
image_np = image_np.astype(np.float32) / 255.0
window_size = (80, 80)
stride = 10
height, width, channels = image_np.shape
probabilities_map = []
for y in range(0, height - window_size[1] + 1, stride):
row_probabilities = []
for x in range(0, width - window_size[0] + 1, stride):
cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
with torch.no_grad():
probabilities = model(cropped_window_torch)
row_probabilities.append(probabilities[0, 1].item())
probabilities_map.append(row_probabilities)
probabilities_map = np.array(probabilities_map)
return probabilities_map
def gradio_process_image(input_image):
original, heatmap, elapsed_time = process_image(input_image.read())
return original, heatmap, f"Elapsed Time (seconds): {elapsed_time}"
inputs = gr.Image(label="Upload Image")
outputs = [
gr.Image(label="Original Image"),
gr.Image(label="Heatmap"),
gr.Textbox(label="Elapsed Time")
]
iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
iface.launch()