shipnet / app.py
Mehmet Batuhan Duman
Changed scan func
31179bc
raw
history blame
8.2 kB
import cv2
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import os
import time
import io
import base64
import torch
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from functools import partial
import tempfile
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(64, 64, 3, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.25)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(64 * 5 * 5, 200)
self.fc2 = nn.Linear(200, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 512, 3, padding=1)
self.bn1 = nn.BatchNorm2d(512)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(512, 256, 3, padding=1)
self.bn2 = nn.BatchNorm2d(256)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(256, 128, 3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(128, 64, 3, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.20)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(1600, 300)
self.fc2 = nn.Linear(300, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
model = None
model_path = "models1.pth"
# model2 = None
# model2_path = "model4.pth"
if os.path.exists(model_path):
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
new_state_dict = {}
for key, value in state_dict.items():
new_key = key.replace("module.", "")
new_state_dict[new_key] = value
model = Net()
model.load_state_dict(new_state_dict)
model.eval()
else:
print("Model file not found at", model_path)
# def process_image(input_image):
# image = Image.fromarray(input_image).convert("RGB")
#
# start_time = time.time()
# heatmap = scanmap(np.array(image), model)
# elapsed_time = time.time() - start_time
# heatmap_img = Image.fromarray(np.uint8(plt.cm.hot(heatmap) * 255)).convert('RGB')
#
# heatmap_img = heatmap_img.resize(image.size)
#
# return image, heatmap_img, int(elapsed_time)
#
#
# def scanmap(image_np, model):
# image_np = image_np.astype(np.float32) / 255.0
#
# window_size = (80, 80)
# stride = 10
#
# height, width, channels = image_np.shape
#
# probabilities_map = []
#
# for y in range(0, height - window_size[1] + 1, stride):
# row_probabilities = []
# for x in range(0, width - window_size[0] + 1, stride):
# cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
# cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
#
# with torch.no_grad():
# probabilities = model(cropped_window_torch)
#
# row_probabilities.append(probabilities[0, 1].item())
#
# probabilities_map.append(row_probabilities)
#
# probabilities_map = np.array(probabilities_map)
# return probabilities_map
#
# def gradio_process_image(input_image):
# original, heatmap, elapsed_time = process_image(input_image)
# return original, heatmap, f"Elapsed Time (seconds): {elapsed_time}"
#
# inputs = gr.Image(label="Upload Image")
# outputs = [
# gr.Image(label="Original Image"),
# gr.Image(label="Heatmap"),
# gr.Textbox(label="Elapsed Time")
# ]
#
# iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
# iface.launch()
def scanmap(image_path, model, threshold=0.5):
satellite_image = cv2.imread(image_path)
satellite_image = satellite_image.astype(np.float32) / 255.0
window_size = (80, 80)
stride = 10
height, width, channels = satellite_image.shape
# ensure model is in float32 precision
model.float()
fig, ax = plt.subplots(1)
ax.imshow(satellite_image)
ship_images = []
for y in range(0, height - window_size[1] + 1, stride):
for x in range(0, width - window_size[0] + 1, stride):
cropped_window = satellite_image[y:y + window_size[1], x:x + window_size[0]]
cropped_window_torch = torch.tensor(cropped_window.transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0)
with torch.no_grad():
probabilities = model(cropped_window_torch)
# if probability is greater than threshold, draw a bounding box and add to ship_images
if probabilities[0, 1].item() > threshold:
rect = patches.Rectangle((x, y), window_size[0], window_size[1], linewidth=1, edgecolor='r',
facecolor='none')
ax.add_patch(rect)
ship_images.append(cropped_window)
output_path = "output.png"
plt.savefig(output_path)
plt.close()
return output_path
def process_image(input_image, model, threshold=0.5):
start_time = time.time()
ship_images = scanmap(input_image, model, threshold)
elapsed_time = time.time() - start_time
return ship_images, int(elapsed_time)
def gradio_process_image(input_image, model, threshold=0.5):
start_time = time.time()
# save numpy array to a temporary file
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
temp.close()
cv2.imwrite(temp.name, cv2.cvtColor(input_image * 255, cv2.COLOR_RGB2BGR))
# pass file path to scanmap
output_image_path = scanmap(temp.name, model, threshold)
elapsed_time = time.time() - start_time
# delete temporary file after processing
os.unlink(temp.name)
return output_image_path, f"Elapsed Time (seconds): {elapsed_time}"
inputs = gr.inputs.Image(label="Upload Image")
outputs = [
gr.outputs.Image(type='filepath', label="Detected Ships"),
gr.outputs.Textbox(label="Elapsed Time")
]
# Use 0.5 as the threshold, but adjust according to your needs
gradio_process_image_partial = partial(gradio_process_image, model=model, threshold=0.5)
iface = gr.Interface(fn=gradio_process_image_partial, inputs=inputs, outputs=outputs)
iface.launch()