shipnet / app.py
Mehmet Batuhan Duman
Changed scan func
d20de52
raw
history blame
7.71 kB
import cv2
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import os
import time
import io
import base64
import torch
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches as patches
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(64, 64, 3, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.25)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(64 * 5 * 5, 200)
self.fc2 = nn.Linear(200, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 512, 3, padding=1)
self.bn1 = nn.BatchNorm2d(512)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(512, 256, 3, padding=1)
self.bn2 = nn.BatchNorm2d(256)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(256, 128, 3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(128, 64, 3, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.20)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(1600, 300)
self.fc2 = nn.Linear(300, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
model = None
model_path = "models1.pth"
model2 = None
model2_path = "model4.pth"
if os.path.exists(model_path):
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
new_state_dict = {}
for key, value in state_dict.items():
new_key = key.replace("module.", "")
new_state_dict[new_key] = value
model = Net()
model.load_state_dict(new_state_dict)
model.eval()
else:
print("Model file not found at", model_path)
# def process_image(input_image):
# image = Image.fromarray(input_image).convert("RGB")
#
# start_time = time.time()
# heatmap = scanmap(np.array(image), model)
# elapsed_time = time.time() - start_time
# heatmap_img = Image.fromarray(np.uint8(plt.cm.hot(heatmap) * 255)).convert('RGB')
#
# heatmap_img = heatmap_img.resize(image.size)
#
# return image, heatmap_img, int(elapsed_time)
#
#
# def scanmap(image_np, model):
# image_np = image_np.astype(np.float32) / 255.0
#
# window_size = (80, 80)
# stride = 10
#
# height, width, channels = image_np.shape
#
# probabilities_map = []
#
# for y in range(0, height - window_size[1] + 1, stride):
# row_probabilities = []
# for x in range(0, width - window_size[0] + 1, stride):
# cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
# cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
#
# with torch.no_grad():
# probabilities = model(cropped_window_torch)
#
# row_probabilities.append(probabilities[0, 1].item())
#
# probabilities_map.append(row_probabilities)
#
# probabilities_map = np.array(probabilities_map)
# return probabilities_map
#
# def gradio_process_image(input_image):
# original, heatmap, elapsed_time = process_image(input_image)
# return original, heatmap, f"Elapsed Time (seconds): {elapsed_time}"
#
# inputs = gr.Image(label="Upload Image")
# outputs = [
# gr.Image(label="Original Image"),
# gr.Image(label="Heatmap"),
# gr.Textbox(label="Elapsed Time")
# ]
#
# iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
# iface.launch()
def scanmap(satellite_image, model, device, threshold=0.5):
# No need to read the image, you already have it as a NumPy array.
# Just normalize it.
satellite_image = satellite_image.astype(np.float32) / 255.0
window_size = (80, 80)
stride = 10
height, width, channels = satellite_image.shape
model.to(device) # ensure model is on correct device
fig, ax = plt.subplots(1)
ax.imshow(satellite_image)
ship_images = []
for y in range(0, height - window_size[1] + 1, stride):
for x in range(0, width - window_size[0] + 1, stride):
cropped_window = satellite_image[y:y + window_size[1], x:x + window_size[0]]
cropped_window_torch = torch.tensor(cropped_window.transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0)
cropped_window_torch = cropped_window_torch.to(device) # move data to the same device as model
with torch.no_grad():
probabilities = model(cropped_window_torch)
# if probability is greater than threshold, draw a bounding box and add to ship_images
if probabilities[0, 1].item() > threshold:
rect = patches.Rectangle((x, y), window_size[0], window_size[1], linewidth=1, edgecolor='r',
facecolor='none')
ax.add_patch(rect)
ship_images.append(cropped_window)
plt.show()
return ship_images
def process_image(input_image, model, device, threshold=0.5):
start_time = time.time()
ship_images = scanmap(input_image, model, device, threshold)
elapsed_time = time.time() - start_time
return ship_images, int(elapsed_time)
def gradio_process_image(input_image, model, device, threshold=0.5):
ship_images, elapsed_time = process_image(input_image, model, device, threshold)
return ship_images, f"Elapsed Time (seconds): {elapsed_time}"
inputs = gr.Image(label="Upload Image")
outputs = [
gr.Image(label="Detected Ships"),
gr.Textbox(label="Elapsed Time")
]
iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
iface.launch()