Spaces:
Sleeping
Sleeping
Mehmet Batuhan Duman
commited on
Commit
·
521227f
1
Parent(s):
de18bbd
Changes and added model3
Browse files- app.py +53 -4
- model3.pth +3 -0
app.py
CHANGED
@@ -64,24 +64,73 @@ class Net2(nn.Module):
|
|
64 |
x = F.relu(self.fc2(x))
|
65 |
x = F.softmax(self.fc3(x), dim=1)
|
66 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
68 |
|
69 |
model2 = None
|
70 |
model2_path = "model4.pth"
|
71 |
|
72 |
-
if os.path.exists(
|
73 |
-
state_dict = torch.load(
|
74 |
new_state_dict = {}
|
75 |
for key, value in state_dict.items():
|
76 |
new_key = key.replace("module.", "")
|
77 |
new_state_dict[new_key] = value
|
78 |
|
79 |
-
model =
|
80 |
model.load_state_dict(new_state_dict)
|
81 |
model.eval()
|
82 |
|
83 |
else:
|
84 |
-
print("Model file not found at",
|
85 |
|
86 |
|
87 |
def process_image(input_image):
|
|
|
64 |
x = F.relu(self.fc2(x))
|
65 |
x = F.softmax(self.fc3(x), dim=1)
|
66 |
return x
|
67 |
+
class Net(nn.Module):
|
68 |
+
def __init__(self):
|
69 |
+
super(Net, self).__init__()
|
70 |
+
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
|
71 |
+
self.pool1 = nn.MaxPool2d(2, 2)
|
72 |
+
self.dropout1 = nn.Dropout(0.25)
|
73 |
+
|
74 |
+
self.conv2 = nn.Conv2d(32, 32, 3, padding=1)
|
75 |
+
self.pool2 = nn.MaxPool2d(2, 2)
|
76 |
+
self.dropout2 = nn.Dropout(0.25)
|
77 |
+
|
78 |
+
self.conv3 = nn.Conv2d(32, 32, 3, padding=1)
|
79 |
+
self.pool3 = nn.MaxPool2d(2, 2)
|
80 |
+
self.dropout3 = nn.Dropout(0.25)
|
81 |
+
|
82 |
+
self.conv4 = nn.Conv2d(32, 32, 3, padding=1)
|
83 |
+
self.pool4 = nn.MaxPool2d(2, 2)
|
84 |
+
self.dropout4 = nn.Dropout(0.25)
|
85 |
+
|
86 |
+
self.flatten = nn.Flatten()
|
87 |
+
|
88 |
+
self.fc1 = nn.Linear(32 * 5 * 5, 200)
|
89 |
+
self.fc2 = nn.Linear(200, 150)
|
90 |
+
self.fc3 = nn.Linear(150, 2)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
x = F.relu(self.conv1(x))
|
94 |
+
x = self.pool1(x)
|
95 |
+
x = self.dropout1(x)
|
96 |
+
|
97 |
+
x = F.relu(self.conv2(x))
|
98 |
+
x = self.pool2(x)
|
99 |
+
x = self.dropout2(x)
|
100 |
+
|
101 |
+
x = F.relu(self.conv3(x))
|
102 |
+
x = self.pool3(x)
|
103 |
+
x = self.dropout3(x)
|
104 |
+
|
105 |
+
x = F.relu(self.conv4(x))
|
106 |
+
x = self.pool4(x)
|
107 |
+
x = self.dropout4(x)
|
108 |
+
|
109 |
+
x = self.flatten(x)
|
110 |
+
x = F.relu(self.fc1(x))
|
111 |
+
x = F.relu(self.fc2(x))
|
112 |
+
x = torch.sigmoid(self.fc3(x))
|
113 |
+
return x
|
114 |
|
115 |
+
model = None
|
116 |
+
model_path = "model3.pth"
|
117 |
|
118 |
model2 = None
|
119 |
model2_path = "model4.pth"
|
120 |
|
121 |
+
if os.path.exists(model_path):
|
122 |
+
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
123 |
new_state_dict = {}
|
124 |
for key, value in state_dict.items():
|
125 |
new_key = key.replace("module.", "")
|
126 |
new_state_dict[new_key] = value
|
127 |
|
128 |
+
model = Net()
|
129 |
model.load_state_dict(new_state_dict)
|
130 |
model.eval()
|
131 |
|
132 |
else:
|
133 |
+
print("Model file not found at", model_path)
|
134 |
|
135 |
|
136 |
def process_image(input_image):
|
model3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71441727a850152f5a1470607decc8800e09b14e8e2ae15efb77d6723decee25
|
3 |
+
size 882027
|