Spaces:
Sleeping
Sleeping
Mehmet Batuhan Duman
commited on
Commit
·
67b8498
1
Parent(s):
ea1daab
Changed scan func
Browse files- .idea/workspace.xml +1 -1
- app.py +13 -17
.idea/workspace.xml
CHANGED
@@ -65,7 +65,7 @@
|
|
65 |
<workItem from="1683665300392" duration="7649000" />
|
66 |
<workItem from="1683708398011" duration="1235000" />
|
67 |
<workItem from="1684437905081" duration="110000" />
|
68 |
-
<workItem from="1686602174110" duration="
|
69 |
</task>
|
70 |
<servers />
|
71 |
</component>
|
|
|
65 |
<workItem from="1683665300392" duration="7649000" />
|
66 |
<workItem from="1683708398011" duration="1235000" />
|
67 |
<workItem from="1684437905081" duration="110000" />
|
68 |
+
<workItem from="1686602174110" duration="7930000" />
|
69 |
</task>
|
70 |
<servers />
|
71 |
</component>
|
app.py
CHANGED
@@ -70,57 +70,53 @@ class Net2(nn.Module):
|
|
70 |
class Net(nn.Module):
|
71 |
def __init__(self):
|
72 |
super(Net, self).__init__()
|
73 |
-
self.conv1 = nn.Conv2d(3,
|
74 |
-
self.bn1 = nn.BatchNorm2d(512)
|
75 |
self.pool1 = nn.MaxPool2d(2, 2)
|
76 |
self.dropout1 = nn.Dropout(0.25)
|
77 |
|
78 |
-
self.conv2 = nn.Conv2d(
|
79 |
-
self.bn2 = nn.BatchNorm2d(256)
|
80 |
self.pool2 = nn.MaxPool2d(2, 2)
|
81 |
self.dropout2 = nn.Dropout(0.25)
|
82 |
|
83 |
-
self.conv3 = nn.Conv2d(
|
84 |
-
self.bn3 = nn.BatchNorm2d(128)
|
85 |
self.pool3 = nn.MaxPool2d(2, 2)
|
86 |
self.dropout3 = nn.Dropout(0.25)
|
87 |
|
88 |
-
self.conv4 = nn.Conv2d(
|
89 |
-
self.bn4 = nn.BatchNorm2d(64)
|
90 |
self.pool4 = nn.MaxPool2d(2, 2)
|
91 |
-
self.dropout4 = nn.Dropout(0.
|
92 |
|
93 |
self.flatten = nn.Flatten()
|
94 |
|
95 |
-
self.fc1 = nn.Linear(
|
96 |
-
self.fc2 = nn.Linear(
|
97 |
self.fc3 = nn.Linear(150, 2)
|
98 |
|
99 |
def forward(self, x):
|
100 |
-
x = F.relu(self.
|
101 |
x = self.pool1(x)
|
102 |
x = self.dropout1(x)
|
103 |
|
104 |
-
x = F.relu(self.
|
105 |
x = self.pool2(x)
|
106 |
x = self.dropout2(x)
|
107 |
|
108 |
-
x = F.relu(self.
|
109 |
x = self.pool3(x)
|
110 |
x = self.dropout3(x)
|
111 |
|
112 |
-
x = F.relu(self.
|
113 |
x = self.pool4(x)
|
114 |
x = self.dropout4(x)
|
115 |
|
116 |
x = self.flatten(x)
|
117 |
x = F.relu(self.fc1(x))
|
118 |
x = F.relu(self.fc2(x))
|
119 |
-
x =
|
120 |
return x
|
121 |
|
122 |
model = None
|
123 |
-
model_path = "
|
124 |
|
125 |
model2 = None
|
126 |
model2_path = "model4.pth"
|
|
|
70 |
class Net(nn.Module):
|
71 |
def __init__(self):
|
72 |
super(Net, self).__init__()
|
73 |
+
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
|
|
|
74 |
self.pool1 = nn.MaxPool2d(2, 2)
|
75 |
self.dropout1 = nn.Dropout(0.25)
|
76 |
|
77 |
+
self.conv2 = nn.Conv2d(32, 32, 3, padding=1)
|
|
|
78 |
self.pool2 = nn.MaxPool2d(2, 2)
|
79 |
self.dropout2 = nn.Dropout(0.25)
|
80 |
|
81 |
+
self.conv3 = nn.Conv2d(32, 32, 3, padding=1)
|
|
|
82 |
self.pool3 = nn.MaxPool2d(2, 2)
|
83 |
self.dropout3 = nn.Dropout(0.25)
|
84 |
|
85 |
+
self.conv4 = nn.Conv2d(32, 32, 3, padding=1)
|
|
|
86 |
self.pool4 = nn.MaxPool2d(2, 2)
|
87 |
+
self.dropout4 = nn.Dropout(0.25)
|
88 |
|
89 |
self.flatten = nn.Flatten()
|
90 |
|
91 |
+
self.fc1 = nn.Linear(32 * 5 * 5, 200)
|
92 |
+
self.fc2 = nn.Linear(200, 150)
|
93 |
self.fc3 = nn.Linear(150, 2)
|
94 |
|
95 |
def forward(self, x):
|
96 |
+
x = F.relu(self.conv1(x))
|
97 |
x = self.pool1(x)
|
98 |
x = self.dropout1(x)
|
99 |
|
100 |
+
x = F.relu(self.conv2(x))
|
101 |
x = self.pool2(x)
|
102 |
x = self.dropout2(x)
|
103 |
|
104 |
+
x = F.relu(self.conv3(x))
|
105 |
x = self.pool3(x)
|
106 |
x = self.dropout3(x)
|
107 |
|
108 |
+
x = F.relu(self.conv4(x))
|
109 |
x = self.pool4(x)
|
110 |
x = self.dropout4(x)
|
111 |
|
112 |
x = self.flatten(x)
|
113 |
x = F.relu(self.fc1(x))
|
114 |
x = F.relu(self.fc2(x))
|
115 |
+
x = torch.sigmoid(self.fc3(x))
|
116 |
return x
|
117 |
|
118 |
model = None
|
119 |
+
model_path = "model3.pth"
|
120 |
|
121 |
model2 = None
|
122 |
model2_path = "model4.pth"
|