File size: 8,872 Bytes
1f8beea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# ref:
# - https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
# - https://github.com/kohya-ss/sd-scripts/blob/main/networks/lora.py

import os
import math
from typing import Optional, List, Type, Set, Literal

import torch
import torch.nn as nn
from diffusers import UNet2DConditionModel
from safetensors.torch import save_file


UNET_TARGET_REPLACE_MODULE_TRANSFORMER = [
#     "Transformer2DModel",  # ใฉใ†ใ‚„ใ‚‰ใ“ใฃใกใฎๆ–นใ‚‰ใ—ใ„๏ผŸ # attn1, 2
    "Attention"
]
UNET_TARGET_REPLACE_MODULE_CONV = [
    "ResnetBlock2D",
    "Downsample2D",
    "Upsample2D",
    #     "DownBlock2D",
    #     "UpBlock2D"
]  # locon, 3clier

LORA_PREFIX_UNET = "lora_unet"

DEFAULT_TARGET_REPLACE = UNET_TARGET_REPLACE_MODULE_TRANSFORMER

TRAINING_METHODS = Literal[
    "noxattn",  # train all layers except x-attns and time_embed layers
    "innoxattn",  # train all layers except self attention layers
    "selfattn",  # ESD-u, train only self attention layers
    "xattn",  # ESD-x, train only x attention layers
    "full",  #  train all layers
    "xattn-strict", # q and k values
    "noxattn-hspace",
    "noxattn-hspace-last",
    # "xlayer",
    # "outxattn",
    # "outsattn",
    # "inxattn",
    # "inmidsattn",
    # "selflayer",
]


class LoRAModule(nn.Module):
    """
    replaces forward method of the original Linear, instead of replacing the original Linear module.
    """

    def __init__(
        self,
        lora_name,
        org_module: nn.Module,
        multiplier=1.0,
        lora_dim=4,
        alpha=1,
    ):
        """if alpha == 0 or None, alpha is rank (no scaling)."""
        super().__init__()
        self.lora_name = lora_name
        self.lora_dim = lora_dim

        if "Linear" in org_module.__class__.__name__:
            in_dim = org_module.in_features
            out_dim = org_module.out_features
            self.lora_down = nn.Linear(in_dim, lora_dim, bias=False)
            self.lora_up = nn.Linear(lora_dim, out_dim, bias=False)

        elif "Conv" in org_module.__class__.__name__:  # ไธ€ๅฟœ
            in_dim = org_module.in_channels
            out_dim = org_module.out_channels

            self.lora_dim = min(self.lora_dim, in_dim, out_dim)
            if self.lora_dim != lora_dim:
                print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")

            kernel_size = org_module.kernel_size
            stride = org_module.stride
            padding = org_module.padding
            self.lora_down = nn.Conv2d(
                in_dim, self.lora_dim, kernel_size, stride, padding, bias=False
            )
            self.lora_up = nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)

        if type(alpha) == torch.Tensor:
            alpha = alpha.detach().numpy()
        alpha = lora_dim if alpha is None or alpha == 0 else alpha
        self.scale = alpha / self.lora_dim
        self.register_buffer("alpha", torch.tensor(alpha))  # ๅฎšๆ•ฐใจใ—ใฆๆ‰ฑใˆใ‚‹

        # same as microsoft's
        nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
        nn.init.zeros_(self.lora_up.weight)

        self.multiplier = multiplier
        self.org_module = org_module  # remove in applying

    def apply_to(self):
        self.org_forward = self.org_module.forward
        self.org_module.forward = self.forward
        del self.org_module

    def forward(self, x):
        return (
            self.org_forward(x)
            + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
        )


class LoRANetwork(nn.Module):
    def __init__(
        self,
        unet: UNet2DConditionModel,
        rank: int = 4,
        multiplier: float = 1.0,
        alpha: float = 1.0,
        train_method: TRAINING_METHODS = "full",
    ) -> None:
        super().__init__()
        self.lora_scale = 1
        self.multiplier = multiplier
        self.lora_dim = rank
        self.alpha = alpha

        # LoRAใฎใฟ
        self.module = LoRAModule

        # unetใฎloraใ‚’ไฝœใ‚‹
        self.unet_loras = self.create_modules(
            LORA_PREFIX_UNET,
            unet,
            DEFAULT_TARGET_REPLACE,
            self.lora_dim,
            self.multiplier,
            train_method=train_method,
        )
        print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")

        # assertion ๅๅ‰ใฎ่ขซใ‚ŠใŒใชใ„ใ‹็ขบ่ชใ—ใฆใ„ใ‚‹ใ‚ˆใ†ใ 
        lora_names = set()
        for lora in self.unet_loras:
            assert (
                lora.lora_name not in lora_names
            ), f"duplicated lora name: {lora.lora_name}. {lora_names}"
            lora_names.add(lora.lora_name)

        # ้ฉ็”จใ™ใ‚‹
        for lora in self.unet_loras:
            lora.apply_to()
            self.add_module(
                lora.lora_name,
                lora,
            )

        del unet

        torch.cuda.empty_cache()

    def create_modules(
        self,
        prefix: str,
        root_module: nn.Module,
        target_replace_modules: List[str],
        rank: int,
        multiplier: float,
        train_method: TRAINING_METHODS,
    ) -> list:
        loras = []
        names = []
        for name, module in root_module.named_modules():
            if train_method == "noxattn" or train_method == "noxattn-hspace" or train_method == "noxattn-hspace-last":  # Cross Attention ใจ Time Embed ไปฅๅค–ๅญฆ็ฟ’
                if "attn2" in name or "time_embed" in name:
                    continue
            elif train_method == "innoxattn":  # Cross Attention ไปฅๅค–ๅญฆ็ฟ’
                if "attn2" in name:
                    continue
            elif train_method == "selfattn":  # Self Attention ใฎใฟๅญฆ็ฟ’
                if "attn1" not in name:
                    continue
            elif train_method == "xattn" or train_method == "xattn-strict":  # Cross Attention ใฎใฟๅญฆ็ฟ’
                if "attn2" not in name:
                    continue
            elif train_method == "full":  # ๅ…จ้ƒจๅญฆ็ฟ’
                pass
            else:
                raise NotImplementedError(
                    f"train_method: {train_method} is not implemented."
                )
            if module.__class__.__name__ in target_replace_modules:
                for child_name, child_module in module.named_modules():
                    if child_module.__class__.__name__ in ["Linear", "Conv2d", "LoRACompatibleLinear", "LoRACompatibleConv"]:
                        if train_method == 'xattn-strict':
                            if 'out' in child_name:
                                continue
                        if train_method == 'noxattn-hspace':
                            if 'mid_block' not in name:
                                continue
                        if train_method == 'noxattn-hspace-last':
                            if 'mid_block' not in name or '.1' not in name or 'conv2' not in child_name:
                                continue
                        lora_name = prefix + "." + name + "." + child_name
                        lora_name = lora_name.replace(".", "_")
#                         print(f"{lora_name}")
                        lora = self.module(
                            lora_name, child_module, multiplier, rank, self.alpha
                        )
#                         print(name, child_name)
#                         print(child_module.weight.shape)
                        loras.append(lora)
                        names.append(lora_name)
#         print(f'@@@@@@@@@@@@@@@@@@@@@@@@@@@@ \n {names}')
        return loras

    def prepare_optimizer_params(self):
        all_params = []

        if self.unet_loras:  # ๅฎŸ่ณชใ“ใ‚Œใ—ใ‹ใชใ„
            params = []
            [params.extend(lora.parameters()) for lora in self.unet_loras]
            param_data = {"params": params}
            all_params.append(param_data)

        return all_params

    def save_weights(self, file, dtype=None, metadata: Optional[dict] = None):
        state_dict = self.state_dict()

        if dtype is not None:
            for key in list(state_dict.keys()):
                v = state_dict[key]
                v = v.detach().clone().to("cpu").to(dtype)
                state_dict[key] = v

#         for key in list(state_dict.keys()):
#             if not key.startswith("lora"):
#                 # loraไปฅๅค–้™คๅค–
#                 del state_dict[key]

        if os.path.splitext(file)[1] == ".safetensors":
            save_file(state_dict, file, metadata)
        else:
            torch.save(state_dict, file)
    def set_lora_slider(self, scale):
        self.lora_scale = scale

    def __enter__(self):
        for lora in self.unet_loras:
            lora.multiplier = 1.0 * self.lora_scale

    def __exit__(self, exc_type, exc_value, tb):
        for lora in self.unet_loras:
            lora.multiplier = 0