File size: 12,617 Bytes
cb9665a
1f8beea
 
 
 
 
f97034c
81a83c8
 
 
f97034c
1f8beea
 
 
 
 
 
 
 
 
 
 
 
 
cb9665a
1f8beea
 
 
 
 
 
 
 
 
 
 
 
 
 
628f18c
 
81a83c8
1f8beea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a83c8
1f8beea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a83c8
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8beea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a1ab0
1f8beea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b7eec
1f8beea
 
 
 
 
 
 
 
 
 
81a83c8
 
1f8beea
 
 
 
 
 
 
 
 
 
e0306f8
1f8beea
 
 
 
 
 
 
d8b7eec
1f8beea
d3a1ab0
 
1f8beea
d3a1ab0
1f8beea
d3a1ab0
 
1f8beea
d3a1ab0
1f8beea
d3a1ab0
 
1f8beea
d3a1ab0
1f8beea
d3a1ab0
 
1f8beea
d3a1ab0
1f8beea
d3a1ab0
1f8beea
d3a1ab0
1f8beea
d3a1ab0
1f8beea
d3a1ab0
1f8beea
d3a1ab0
1f8beea
d3a1ab0
1f8beea
d3a1ab0
e0306f8
1f8beea
81a83c8
1f8beea
 
 
 
 
 
 
81a83c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8beea
 
81a83c8
 
1f8beea
81a83c8
 
 
 
 
 
 
 
 
 
1f8beea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import gradio as gr
import torch    
import os
from utils import call
from diffusers.pipelines import StableDiffusionXLPipeline
StableDiffusionXLPipeline.__call__ = call
import os
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV


os.environ['CURL_CA_BUNDLE'] = ''
model_map = {'Age' : 'models/age.pt', 
             'Chubby': 'models/chubby.pt',
             'Muscular': 'models/muscular.pt',
             'Wavy Eyebrows': 'models/eyebrows.pt',
             'Small Eyes': 'models/eyesize.pt',
             'Long Hair' : 'models/longhair.pt',
             'Curly Hair' : 'models/curlyhair.pt',
             'Smiling' : 'models/smiling.pt',
             'Pixar Style' : 'models/pixar_style.pt',
             'Sculpture Style': 'models/sculpture_style.pt',
             'Repair Images': 'models/repair_slider.pt',
             'Fix Hands': 'models/fix_hands.pt',
            }

ORIGINAL_SPACE_ID = 'baulab/ConceptSliders'
SPACE_ID = os.getenv('SPACE_ID')

SHARED_UI_WARNING = f'''## Attention - Training does not work in this shared UI. You can either duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''


class Demo:

    def __init__(self) -> None:

        self.training = False
        self.generating = False
        self.device = 'cpu'
        self.weight_dtype = torch.float32
        self.pipe = StableDiffusionXLPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=self.weight_dtype).to(self.device)

        with gr.Blocks() as demo:
            self.layout()
            demo.queue(concurrency_count=5).launch()


    def layout(self):

        with gr.Row():

            if SPACE_ID == ORIGINAL_SPACE_ID:

                self.warning = gr.Markdown(SHARED_UI_WARNING)
          
        with gr.Row():
                
            with gr.Tab("Test") as inference_column:

                with gr.Row():

                    self.explain_infr = gr.Markdown(value='This is a demo of [Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models](https://sliders.baulab.info/). To try out a model that can control a particular concept, select a model and enter any prompt, choose a seed, and finally choose the SDEdit timestep for structural preservation. Higher SDEdit timesteps results in more structural change. For example, if you select the model "Surprised Look" you can generate images for the prompt "A picture of a person, realistic, 8k" and compare the slider effect to the image generated by original model.  We have also provided several other pre-fine-tuned models like "repair" sliders to repair flaws in SDXL generated images (Check out the "Pretrained Sliders" drop-down). You can also train and run your own custom sliders. Check out the "train" section for custom concept slider training.')

                with gr.Row():

                    with gr.Column(scale=1):

                        self.prompt_input_infr = gr.Text(
                            placeholder="Enter prompt...",
                            label="Prompt",
                            info="Prompt to generate"
                        )

                        with gr.Row():

                            self.model_dropdown = gr.Dropdown(
                                label="Pretrained Sliders",
                                choices= list(model_map.keys()),
                                value='Age',
                                interactive=True
                            )

                            self.seed_infr = gr.Number(
                                label="Seed",
                                value=12345
                            )
                            
                            self.slider_scale_infr = gr.Number(
                                label="Slider Scale",
                                value=2,
                                info="Larger slider scale result in stronger edit"
                            )

                            
                            self.start_noise_infr = gr.Slider(
                                600, 900, 
                                value=750, 
                                label="SDEdit Timestep", 
                                info="Choose smaller values for more structural preservation"
                            )

                    with gr.Column(scale=2):

                        self.infr_button = gr.Button(
                            value="Generate",
                            interactive=True
                        )

                        with gr.Row():

                            self.image_new = gr.Image(
                                label="Slider",
                                interactive=False
                            )
                            self.image_orig = gr.Image(
                                label="Original SD",
                                interactive=False
                            )

            with gr.Tab("Train") as training_column:

                with gr.Row():

                    self.explain_train= gr.Markdown(value='In this part you can train a concept slider for Stable Diffusion XL.   Enter a target concept you wish to make an edit on. Next, enter a enhance prompt of the attribute you wish to edit (for controlling age of a person, enter "person, old"). Then, type the supress prompt of the attribute (for our example, enter "person, young"). Then press "train" button. With default settings, it takes about 15 minutes to train a slider; then you can try inference above or download the weights. Code and details are at [github link](https://github.com/rohitgandikota/sliders).')

                with gr.Row():

                    with gr.Column(scale=3):

                        self.target_concept = gr.Text(
                            placeholder="Enter target concept to make edit on ...",
                            label="Prompt of concept on which edit is made",
                            info="Prompt corresponding to concept to edit"
                        )
                        
                        self.positive_prompt = gr.Text(
                            placeholder="Enter the enhance prompt for the edit...",
                            label="Prompt to enhance",
                            info="Prompt corresponding to concept to enhance"
                        )
                        
                        self.negative_prompt = gr.Text(
                            placeholder="Enter the suppress prompt for the edit...",
                            label="Prompt to suppress",
                            info="Prompt corresponding to concept to supress"
                        )


                        self.rank = gr.Number(
                            value=4,
                            label="Rank of the Slider",
                            info='Slider Rank to train'
                        )

                        self.iterations_input = gr.Number(
                            value=1000,
                            precision=0,
                            label="Iterations",
                            info='iterations used to train'
                        )

                        self.lr_input = gr.Number(
                            value=2e-4,
                            label="Learning Rate",
                            info='Learning rate used to train'
                        )

                    with gr.Column(scale=1):

                        self.train_status = gr.Button(value='', variant='primary', interactive=False)

                        self.train_button = gr.Button(
                            value="Train",
                        )

                        self.download = gr.Files()

        self.infr_button.click(self.inference, inputs = [
            self.prompt_input_infr,
            self.seed_infr,
            self.start_noise_infr,
            self.slider_scale_infr,
            self.model_dropdown
            ],
            outputs=[
                self.image_new,
                self.image_orig
            ]
        )
        self.train_button.click(self.train, inputs = [
            self.target_concept,
            self.positive_prompt,
            self.negative_prompt,
            self.rank,
            self.iterations_input,
            self.lr_input
        ],
        outputs=[self.train_button,  self.train_status, self.download, self.model_dropdown]
        )

    def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):

#         if self.training:
#             return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]

#         if train_method == 'ESD-x':

#             modules = ".*attn2$"
#             frozen = []

#         elif train_method == 'ESD-u':

#             modules = "unet$"
#             frozen = [".*attn2$", "unet.time_embedding$", "unet.conv_out$"]   

#         elif train_method == 'ESD-self':

#             modules = ".*attn1$"
#             frozen = []

#         randn = torch.randint(1, 10000000, (1,)).item()

#         save_path = f"models/{randn}_{prompt.lower().replace(' ', '')}.pt"

#         self.training = True

#         train(prompt, modules, frozen, iterations, neg_guidance, lr, save_path)

#         self.training = False

#         torch.cuda.empty_cache()

#         model_map['Custom'] = save_path

#         return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom model in the "Test" tab'), save_path, gr.Dropdown.update(choices=list(model_map.keys()), value='Custom')]
        return [None, None, None, None]

    def inference(self, prompt, seed, start_noise, scale, model_name, pbar = gr.Progress(track_tqdm=True)):
        
        seed = seed or 12345

        generator = torch.manual_seed(seed)

        model_path = model_map[model_name]
        
        unet = self.pipe.unet
        network_type = "c3lier"
        if 'full' in model_path:
            train_method = 'full'
        elif 'noxattn' in model_path:
            train_method = 'noxattn'
        elif 'xattn' in model_path:
            train_method = 'xattn'
            network_type = 'lierla'
        else:
            train_method = 'noxattn'

        modules = DEFAULT_TARGET_REPLACE
        if network_type == "c3lier":
            modules += UNET_TARGET_REPLACE_MODULE_CONV

        name = os.path.basename(model_path)
        rank = 4
        alpha = 1
        if 'rank4' in model_path:
            rank = 4
        if 'rank8' in model_path:
            rank = 8
        if 'alpha1' in model_path:
            alpha = 1.0
        network = LoRANetwork(
                unet,
                rank=rank,
                multiplier=1.0,
                alpha=alpha,
                train_method=train_method,
            ).to(self.device, dtype=self.weight_dtype)
        network.load_state_dict(torch.load(model_path))


        generator = torch.manual_seed(seed)
        edited_image = pipe(prompt, num_images_per_prompt=1, num_inference_steps=50, generator=generator, network=network, start_noise=start_noise, scale=scale, unet=unet).images[0]
        
        generator = torch.manual_seed(seed)
        original_image = pipe(prompt, num_images_per_prompt=1, num_inference_steps=50, generator=generator, network=network, start_noise=start_noise, scale=0, unet=unet).images[0]
        
        del unet, network
        unet = None
        network = None
        pipe = None
        torch.cuda.empty_cache()
        
        return edited_image, original_image 

demo = Demo()