Spaces:
Runtime error
Runtime error
File size: 12,617 Bytes
cb9665a 1f8beea f97034c 81a83c8 f97034c 1f8beea cb9665a 1f8beea 628f18c 81a83c8 1f8beea 81a83c8 1f8beea 81a83c8 1f8beea d3a1ab0 1f8beea d8b7eec 1f8beea 81a83c8 1f8beea e0306f8 1f8beea d8b7eec 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 1f8beea d3a1ab0 e0306f8 1f8beea 81a83c8 1f8beea 81a83c8 1f8beea 81a83c8 1f8beea 81a83c8 1f8beea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import gradio as gr
import torch
import os
from utils import call
from diffusers.pipelines import StableDiffusionXLPipeline
StableDiffusionXLPipeline.__call__ = call
import os
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
os.environ['CURL_CA_BUNDLE'] = ''
model_map = {'Age' : 'models/age.pt',
'Chubby': 'models/chubby.pt',
'Muscular': 'models/muscular.pt',
'Wavy Eyebrows': 'models/eyebrows.pt',
'Small Eyes': 'models/eyesize.pt',
'Long Hair' : 'models/longhair.pt',
'Curly Hair' : 'models/curlyhair.pt',
'Smiling' : 'models/smiling.pt',
'Pixar Style' : 'models/pixar_style.pt',
'Sculpture Style': 'models/sculpture_style.pt',
'Repair Images': 'models/repair_slider.pt',
'Fix Hands': 'models/fix_hands.pt',
}
ORIGINAL_SPACE_ID = 'baulab/ConceptSliders'
SPACE_ID = os.getenv('SPACE_ID')
SHARED_UI_WARNING = f'''## Attention - Training does not work in this shared UI. You can either duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
class Demo:
def __init__(self) -> None:
self.training = False
self.generating = False
self.device = 'cpu'
self.weight_dtype = torch.float32
self.pipe = StableDiffusionXLPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=self.weight_dtype).to(self.device)
with gr.Blocks() as demo:
self.layout()
demo.queue(concurrency_count=5).launch()
def layout(self):
with gr.Row():
if SPACE_ID == ORIGINAL_SPACE_ID:
self.warning = gr.Markdown(SHARED_UI_WARNING)
with gr.Row():
with gr.Tab("Test") as inference_column:
with gr.Row():
self.explain_infr = gr.Markdown(value='This is a demo of [Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models](https://sliders.baulab.info/). To try out a model that can control a particular concept, select a model and enter any prompt, choose a seed, and finally choose the SDEdit timestep for structural preservation. Higher SDEdit timesteps results in more structural change. For example, if you select the model "Surprised Look" you can generate images for the prompt "A picture of a person, realistic, 8k" and compare the slider effect to the image generated by original model. We have also provided several other pre-fine-tuned models like "repair" sliders to repair flaws in SDXL generated images (Check out the "Pretrained Sliders" drop-down). You can also train and run your own custom sliders. Check out the "train" section for custom concept slider training.')
with gr.Row():
with gr.Column(scale=1):
self.prompt_input_infr = gr.Text(
placeholder="Enter prompt...",
label="Prompt",
info="Prompt to generate"
)
with gr.Row():
self.model_dropdown = gr.Dropdown(
label="Pretrained Sliders",
choices= list(model_map.keys()),
value='Age',
interactive=True
)
self.seed_infr = gr.Number(
label="Seed",
value=12345
)
self.slider_scale_infr = gr.Number(
label="Slider Scale",
value=2,
info="Larger slider scale result in stronger edit"
)
self.start_noise_infr = gr.Slider(
600, 900,
value=750,
label="SDEdit Timestep",
info="Choose smaller values for more structural preservation"
)
with gr.Column(scale=2):
self.infr_button = gr.Button(
value="Generate",
interactive=True
)
with gr.Row():
self.image_new = gr.Image(
label="Slider",
interactive=False
)
self.image_orig = gr.Image(
label="Original SD",
interactive=False
)
with gr.Tab("Train") as training_column:
with gr.Row():
self.explain_train= gr.Markdown(value='In this part you can train a concept slider for Stable Diffusion XL. Enter a target concept you wish to make an edit on. Next, enter a enhance prompt of the attribute you wish to edit (for controlling age of a person, enter "person, old"). Then, type the supress prompt of the attribute (for our example, enter "person, young"). Then press "train" button. With default settings, it takes about 15 minutes to train a slider; then you can try inference above or download the weights. Code and details are at [github link](https://github.com/rohitgandikota/sliders).')
with gr.Row():
with gr.Column(scale=3):
self.target_concept = gr.Text(
placeholder="Enter target concept to make edit on ...",
label="Prompt of concept on which edit is made",
info="Prompt corresponding to concept to edit"
)
self.positive_prompt = gr.Text(
placeholder="Enter the enhance prompt for the edit...",
label="Prompt to enhance",
info="Prompt corresponding to concept to enhance"
)
self.negative_prompt = gr.Text(
placeholder="Enter the suppress prompt for the edit...",
label="Prompt to suppress",
info="Prompt corresponding to concept to supress"
)
self.rank = gr.Number(
value=4,
label="Rank of the Slider",
info='Slider Rank to train'
)
self.iterations_input = gr.Number(
value=1000,
precision=0,
label="Iterations",
info='iterations used to train'
)
self.lr_input = gr.Number(
value=2e-4,
label="Learning Rate",
info='Learning rate used to train'
)
with gr.Column(scale=1):
self.train_status = gr.Button(value='', variant='primary', interactive=False)
self.train_button = gr.Button(
value="Train",
)
self.download = gr.Files()
self.infr_button.click(self.inference, inputs = [
self.prompt_input_infr,
self.seed_infr,
self.start_noise_infr,
self.slider_scale_infr,
self.model_dropdown
],
outputs=[
self.image_new,
self.image_orig
]
)
self.train_button.click(self.train, inputs = [
self.target_concept,
self.positive_prompt,
self.negative_prompt,
self.rank,
self.iterations_input,
self.lr_input
],
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
)
def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
# if self.training:
# return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
# if train_method == 'ESD-x':
# modules = ".*attn2$"
# frozen = []
# elif train_method == 'ESD-u':
# modules = "unet$"
# frozen = [".*attn2$", "unet.time_embedding$", "unet.conv_out$"]
# elif train_method == 'ESD-self':
# modules = ".*attn1$"
# frozen = []
# randn = torch.randint(1, 10000000, (1,)).item()
# save_path = f"models/{randn}_{prompt.lower().replace(' ', '')}.pt"
# self.training = True
# train(prompt, modules, frozen, iterations, neg_guidance, lr, save_path)
# self.training = False
# torch.cuda.empty_cache()
# model_map['Custom'] = save_path
# return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom model in the "Test" tab'), save_path, gr.Dropdown.update(choices=list(model_map.keys()), value='Custom')]
return [None, None, None, None]
def inference(self, prompt, seed, start_noise, scale, model_name, pbar = gr.Progress(track_tqdm=True)):
seed = seed or 12345
generator = torch.manual_seed(seed)
model_path = model_map[model_name]
unet = self.pipe.unet
network_type = "c3lier"
if 'full' in model_path:
train_method = 'full'
elif 'noxattn' in model_path:
train_method = 'noxattn'
elif 'xattn' in model_path:
train_method = 'xattn'
network_type = 'lierla'
else:
train_method = 'noxattn'
modules = DEFAULT_TARGET_REPLACE
if network_type == "c3lier":
modules += UNET_TARGET_REPLACE_MODULE_CONV
name = os.path.basename(model_path)
rank = 4
alpha = 1
if 'rank4' in model_path:
rank = 4
if 'rank8' in model_path:
rank = 8
if 'alpha1' in model_path:
alpha = 1.0
network = LoRANetwork(
unet,
rank=rank,
multiplier=1.0,
alpha=alpha,
train_method=train_method,
).to(self.device, dtype=self.weight_dtype)
network.load_state_dict(torch.load(model_path))
generator = torch.manual_seed(seed)
edited_image = pipe(prompt, num_images_per_prompt=1, num_inference_steps=50, generator=generator, network=network, start_noise=start_noise, scale=scale, unet=unet).images[0]
generator = torch.manual_seed(seed)
original_image = pipe(prompt, num_images_per_prompt=1, num_inference_steps=50, generator=generator, network=network, start_noise=start_noise, scale=0, unet=unet).images[0]
del unet, network
unet = None
network = None
pipe = None
torch.cuda.empty_cache()
return edited_image, original_image
demo = Demo()
|