Spaces:
Running
on
A10G
Running
on
A10G
File size: 8,914 Bytes
1f8beea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# ref:
# - https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
# - https://github.com/kohya-ss/sd-scripts/blob/main/networks/lora.py
import os
import math
from typing import Optional, List, Type, Set, Literal
import torch
import torch.nn as nn
from diffusers import UNet2DConditionModel
from safetensors.torch import save_file
UNET_TARGET_REPLACE_MODULE_TRANSFORMER = [
# "Transformer2DModel", # どうやらこっちの方らしい? # attn1, 2
"Attention"
]
UNET_TARGET_REPLACE_MODULE_CONV = [
"ResnetBlock2D",
"Downsample2D",
"Upsample2D",
"DownBlock2D",
"UpBlock2D",
] # locon, 3clier
LORA_PREFIX_UNET = "lora_unet"
DEFAULT_TARGET_REPLACE = UNET_TARGET_REPLACE_MODULE_TRANSFORMER
TRAINING_METHODS = Literal[
"noxattn", # train all layers except x-attns and time_embed layers
"innoxattn", # train all layers except self attention layers
"selfattn", # ESD-u, train only self attention layers
"xattn", # ESD-x, train only x attention layers
"full", # train all layers
"xattn-strict", # q and k values
"noxattn-hspace",
"noxattn-hspace-last",
# "xlayer",
# "outxattn",
# "outsattn",
# "inxattn",
# "inmidsattn",
# "selflayer",
]
class LoRAModule(nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
):
"""if alpha == 0 or None, alpha is rank (no scaling)."""
super().__init__()
self.lora_name = lora_name
self.lora_dim = lora_dim
if "Linear" in org_module.__class__.__name__:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_down = nn.Linear(in_dim, lora_dim, bias=False)
self.lora_up = nn.Linear(lora_dim, out_dim, bias=False)
elif "Conv" in org_module.__class__.__name__: # 一応
in_dim = org_module.in_channels
out_dim = org_module.out_channels
self.lora_dim = min(self.lora_dim, in_dim, out_dim)
if self.lora_dim != lora_dim:
print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = nn.Conv2d(
in_dim, self.lora_dim, kernel_size, stride, padding, bias=False
)
self.lora_up = nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().numpy()
alpha = lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
nn.init.kaiming_uniform_(self.lora_down.weight, a=1)
nn.init.zeros_(self.lora_up.weight)
self.multiplier = multiplier
self.org_module = org_module # remove in applying
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
return (
self.org_forward(x)
+ self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
)
class LoRANetwork(nn.Module):
def __init__(
self,
unet: UNet2DConditionModel,
rank: int = 4,
multiplier: float = 1.0,
alpha: float = 1.0,
train_method: TRAINING_METHODS = "full",
) -> None:
super().__init__()
self.lora_scale = 1
self.multiplier = multiplier
self.lora_dim = rank
self.alpha = alpha
# LoRAのみ
self.module = LoRAModule
# unetのloraを作る
self.unet_loras = self.create_modules(
LORA_PREFIX_UNET,
unet,
DEFAULT_TARGET_REPLACE,
self.lora_dim,
self.multiplier,
train_method=train_method,
)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
# assertion 名前の被りがないか確認しているようだ
lora_names = set()
for lora in self.unet_loras:
assert (
lora.lora_name not in lora_names
), f"duplicated lora name: {lora.lora_name}. {lora_names}"
lora_names.add(lora.lora_name)
# 適用する
for lora in self.unet_loras:
lora.apply_to()
self.add_module(
lora.lora_name,
lora,
)
del unet
torch.cuda.empty_cache()
def create_modules(
self,
prefix: str,
root_module: nn.Module,
target_replace_modules: List[str],
rank: int,
multiplier: float,
train_method: TRAINING_METHODS,
) -> list:
loras = []
names = []
for name, module in root_module.named_modules():
if train_method == "noxattn" or train_method == "noxattn-hspace" or train_method == "noxattn-hspace-last": # Cross Attention と Time Embed 以外学習
if "attn2" in name or "time_embed" in name:
continue
elif train_method == "innoxattn": # Cross Attention 以外学習
if "attn2" in name:
continue
elif train_method == "selfattn": # Self Attention のみ学習
if "attn1" not in name:
continue
elif train_method == "xattn" or train_method == "xattn-strict": # Cross Attention のみ学習
if "attn2" not in name:
continue
elif train_method == "full": # 全部学習
pass
else:
raise NotImplementedError(
f"train_method: {train_method} is not implemented."
)
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ in ["Linear", "Conv2d", "LoRACompatibleLinear", "LoRACompatibleConv"]:
if train_method == 'xattn-strict':
if 'out' in child_name:
continue
if train_method == 'noxattn-hspace':
if 'mid_block' not in name:
continue
if train_method == 'noxattn-hspace-last':
if 'mid_block' not in name or '.1' not in name or 'conv2' not in child_name:
continue
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
# print(f"{lora_name}")
lora = self.module(
lora_name, child_module, multiplier, rank, self.alpha
)
# print(name, child_name)
# print(child_module.weight.shape)
if lora_name not in names:
loras.append(lora)
names.append(lora_name)
# print(f'@@@@@@@@@@@@@@@@@@@@@@@@@@@@ \n {names}')
return loras
def prepare_optimizer_params(self):
all_params = []
if self.unet_loras: # 実質これしかない
params = []
[params.extend(lora.parameters()) for lora in self.unet_loras]
param_data = {"params": params}
all_params.append(param_data)
return all_params
def save_weights(self, file, dtype=None, metadata: Optional[dict] = None):
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
# for key in list(state_dict.keys()):
# if not key.startswith("lora"):
# # lora以外除外
# del state_dict[key]
if os.path.splitext(file)[1] == ".safetensors":
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def set_lora_slider(self, scale):
self.lora_scale = scale
def __enter__(self):
for lora in self.unet_loras:
lora.multiplier = 1.0 * self.lora_scale
def __exit__(self, exc_type, exc_value, tb):
for lora in self.unet_loras:
lora.multiplier = 0
|