Spaces:
Runtime error
Runtime error
RohitGandikota
commited on
Commit
·
66982a6
1
Parent(s):
6916a7c
pushing training code
Browse files
trainscripts/textsliders/demo_train.py
DELETED
@@ -1,434 +0,0 @@
|
|
1 |
-
# ref:
|
2 |
-
# - https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L566
|
3 |
-
# - https://huggingface.co/spaces/baulab/Erasing-Concepts-In-Diffusion/blob/main/train.py
|
4 |
-
|
5 |
-
from typing import List, Optional
|
6 |
-
import argparse
|
7 |
-
import ast
|
8 |
-
from pathlib import Path
|
9 |
-
import gc
|
10 |
-
|
11 |
-
import torch
|
12 |
-
from tqdm import tqdm
|
13 |
-
|
14 |
-
|
15 |
-
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
16 |
-
import train_util
|
17 |
-
import model_util
|
18 |
-
import prompt_util
|
19 |
-
from prompt_util import (
|
20 |
-
PromptEmbedsCache,
|
21 |
-
PromptEmbedsPair,
|
22 |
-
PromptSettings,
|
23 |
-
PromptEmbedsXL,
|
24 |
-
)
|
25 |
-
import debug_util
|
26 |
-
import config_util
|
27 |
-
from config_util import RootConfig
|
28 |
-
|
29 |
-
import wandb
|
30 |
-
|
31 |
-
NUM_IMAGES_PER_PROMPT = 1
|
32 |
-
|
33 |
-
|
34 |
-
def flush():
|
35 |
-
torch.cuda.empty_cache()
|
36 |
-
gc.collect()
|
37 |
-
|
38 |
-
|
39 |
-
def train(
|
40 |
-
config: RootConfig,
|
41 |
-
prompts: list[PromptSettings],
|
42 |
-
device,
|
43 |
-
):
|
44 |
-
metadata = {
|
45 |
-
"prompts": ",".join([prompt.json() for prompt in prompts]),
|
46 |
-
"config": config.json(),
|
47 |
-
}
|
48 |
-
save_path = Path(config.save.path)
|
49 |
-
|
50 |
-
modules = DEFAULT_TARGET_REPLACE
|
51 |
-
if config.network.type == "c3lier":
|
52 |
-
modules += UNET_TARGET_REPLACE_MODULE_CONV
|
53 |
-
|
54 |
-
if config.logging.verbose:
|
55 |
-
print(metadata)
|
56 |
-
|
57 |
-
if config.logging.use_wandb:
|
58 |
-
wandb.init(project=f"LECO_{config.save.name}", config=metadata)
|
59 |
-
|
60 |
-
weight_dtype = config_util.parse_precision(config.train.precision)
|
61 |
-
save_weight_dtype = config_util.parse_precision(config.train.precision)
|
62 |
-
|
63 |
-
(
|
64 |
-
tokenizers,
|
65 |
-
text_encoders,
|
66 |
-
unet,
|
67 |
-
noise_scheduler,
|
68 |
-
) = model_util.load_models_xl(
|
69 |
-
config.pretrained_model.name_or_path,
|
70 |
-
scheduler_name=config.train.noise_scheduler,
|
71 |
-
)
|
72 |
-
|
73 |
-
for text_encoder in text_encoders:
|
74 |
-
text_encoder.to(device, dtype=weight_dtype)
|
75 |
-
text_encoder.requires_grad_(False)
|
76 |
-
text_encoder.eval()
|
77 |
-
|
78 |
-
unet.to(device, dtype=weight_dtype)
|
79 |
-
if config.other.use_xformers:
|
80 |
-
unet.enable_xformers_memory_efficient_attention()
|
81 |
-
unet.requires_grad_(False)
|
82 |
-
unet.eval()
|
83 |
-
|
84 |
-
network = LoRANetwork(
|
85 |
-
unet,
|
86 |
-
rank=config.network.rank,
|
87 |
-
multiplier=1.0,
|
88 |
-
alpha=config.network.alpha,
|
89 |
-
train_method=config.network.training_method,
|
90 |
-
).to(device, dtype=weight_dtype)
|
91 |
-
|
92 |
-
optimizer_module = train_util.get_optimizer(config.train.optimizer)
|
93 |
-
#optimizer_args
|
94 |
-
optimizer_kwargs = {}
|
95 |
-
if config.train.optimizer_args is not None and len(config.train.optimizer_args) > 0:
|
96 |
-
for arg in config.train.optimizer_args.split(" "):
|
97 |
-
key, value = arg.split("=")
|
98 |
-
value = ast.literal_eval(value)
|
99 |
-
optimizer_kwargs[key] = value
|
100 |
-
|
101 |
-
optimizer = optimizer_module(network.prepare_optimizer_params(), lr=config.train.lr, **optimizer_kwargs)
|
102 |
-
lr_scheduler = train_util.get_lr_scheduler(
|
103 |
-
config.train.lr_scheduler,
|
104 |
-
optimizer,
|
105 |
-
max_iterations=config.train.iterations,
|
106 |
-
lr_min=config.train.lr / 100,
|
107 |
-
)
|
108 |
-
criteria = torch.nn.MSELoss()
|
109 |
-
|
110 |
-
print("Prompts")
|
111 |
-
for settings in prompts:
|
112 |
-
print(settings)
|
113 |
-
|
114 |
-
# debug
|
115 |
-
debug_util.check_requires_grad(network)
|
116 |
-
debug_util.check_training_mode(network)
|
117 |
-
|
118 |
-
cache = PromptEmbedsCache()
|
119 |
-
prompt_pairs: list[PromptEmbedsPair] = []
|
120 |
-
|
121 |
-
with torch.no_grad():
|
122 |
-
for settings in prompts:
|
123 |
-
print(settings)
|
124 |
-
for prompt in [
|
125 |
-
settings.target,
|
126 |
-
settings.positive,
|
127 |
-
settings.neutral,
|
128 |
-
settings.unconditional,
|
129 |
-
]:
|
130 |
-
if cache[prompt] == None:
|
131 |
-
tex_embs, pool_embs = train_util.encode_prompts_xl(
|
132 |
-
tokenizers,
|
133 |
-
text_encoders,
|
134 |
-
[prompt],
|
135 |
-
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
136 |
-
)
|
137 |
-
cache[prompt] = PromptEmbedsXL(
|
138 |
-
tex_embs,
|
139 |
-
pool_embs
|
140 |
-
)
|
141 |
-
|
142 |
-
prompt_pairs.append(
|
143 |
-
PromptEmbedsPair(
|
144 |
-
criteria,
|
145 |
-
cache[settings.target],
|
146 |
-
cache[settings.positive],
|
147 |
-
cache[settings.unconditional],
|
148 |
-
cache[settings.neutral],
|
149 |
-
settings,
|
150 |
-
)
|
151 |
-
)
|
152 |
-
|
153 |
-
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
154 |
-
del tokenizer, text_encoder
|
155 |
-
|
156 |
-
flush()
|
157 |
-
|
158 |
-
pbar = tqdm(range(config.train.iterations))
|
159 |
-
|
160 |
-
loss = None
|
161 |
-
|
162 |
-
for i in pbar:
|
163 |
-
with torch.no_grad():
|
164 |
-
noise_scheduler.set_timesteps(
|
165 |
-
config.train.max_denoising_steps, device=device
|
166 |
-
)
|
167 |
-
|
168 |
-
optimizer.zero_grad()
|
169 |
-
|
170 |
-
prompt_pair: PromptEmbedsPair = prompt_pairs[
|
171 |
-
torch.randint(0, len(prompt_pairs), (1,)).item()
|
172 |
-
]
|
173 |
-
|
174 |
-
# 1 ~ 49 からランダム
|
175 |
-
timesteps_to = torch.randint(
|
176 |
-
1, config.train.max_denoising_steps, (1,)
|
177 |
-
).item()
|
178 |
-
|
179 |
-
height, width = prompt_pair.resolution, prompt_pair.resolution
|
180 |
-
if prompt_pair.dynamic_resolution:
|
181 |
-
height, width = train_util.get_random_resolution_in_bucket(
|
182 |
-
prompt_pair.resolution
|
183 |
-
)
|
184 |
-
|
185 |
-
if config.logging.verbose:
|
186 |
-
print("gudance_scale:", prompt_pair.guidance_scale)
|
187 |
-
print("resolution:", prompt_pair.resolution)
|
188 |
-
print("dynamic_resolution:", prompt_pair.dynamic_resolution)
|
189 |
-
if prompt_pair.dynamic_resolution:
|
190 |
-
print("bucketed resolution:", (height, width))
|
191 |
-
print("batch_size:", prompt_pair.batch_size)
|
192 |
-
print("dynamic_crops:", prompt_pair.dynamic_crops)
|
193 |
-
|
194 |
-
latents = train_util.get_initial_latents(
|
195 |
-
noise_scheduler, prompt_pair.batch_size, height, width, 1
|
196 |
-
).to(device, dtype=weight_dtype)
|
197 |
-
|
198 |
-
add_time_ids = train_util.get_add_time_ids(
|
199 |
-
height,
|
200 |
-
width,
|
201 |
-
dynamic_crops=prompt_pair.dynamic_crops,
|
202 |
-
dtype=weight_dtype,
|
203 |
-
).to(device, dtype=weight_dtype)
|
204 |
-
|
205 |
-
with network:
|
206 |
-
# ちょっとデノイズされれたものが返る
|
207 |
-
denoised_latents = train_util.diffusion_xl(
|
208 |
-
unet,
|
209 |
-
noise_scheduler,
|
210 |
-
latents, # 単純なノイズのlatentsを渡す
|
211 |
-
text_embeddings=train_util.concat_embeddings(
|
212 |
-
prompt_pair.unconditional.text_embeds,
|
213 |
-
prompt_pair.target.text_embeds,
|
214 |
-
prompt_pair.batch_size,
|
215 |
-
),
|
216 |
-
add_text_embeddings=train_util.concat_embeddings(
|
217 |
-
prompt_pair.unconditional.pooled_embeds,
|
218 |
-
prompt_pair.target.pooled_embeds,
|
219 |
-
prompt_pair.batch_size,
|
220 |
-
),
|
221 |
-
add_time_ids=train_util.concat_embeddings(
|
222 |
-
add_time_ids, add_time_ids, prompt_pair.batch_size
|
223 |
-
),
|
224 |
-
start_timesteps=0,
|
225 |
-
total_timesteps=timesteps_to,
|
226 |
-
guidance_scale=3,
|
227 |
-
)
|
228 |
-
|
229 |
-
noise_scheduler.set_timesteps(1000)
|
230 |
-
|
231 |
-
current_timestep = noise_scheduler.timesteps[
|
232 |
-
int(timesteps_to * 1000 / config.train.max_denoising_steps)
|
233 |
-
]
|
234 |
-
|
235 |
-
# with network: の外では空のLoRAのみが有効になる
|
236 |
-
positive_latents = train_util.predict_noise_xl(
|
237 |
-
unet,
|
238 |
-
noise_scheduler,
|
239 |
-
current_timestep,
|
240 |
-
denoised_latents,
|
241 |
-
text_embeddings=train_util.concat_embeddings(
|
242 |
-
prompt_pair.unconditional.text_embeds,
|
243 |
-
prompt_pair.positive.text_embeds,
|
244 |
-
prompt_pair.batch_size,
|
245 |
-
),
|
246 |
-
add_text_embeddings=train_util.concat_embeddings(
|
247 |
-
prompt_pair.unconditional.pooled_embeds,
|
248 |
-
prompt_pair.positive.pooled_embeds,
|
249 |
-
prompt_pair.batch_size,
|
250 |
-
),
|
251 |
-
add_time_ids=train_util.concat_embeddings(
|
252 |
-
add_time_ids, add_time_ids, prompt_pair.batch_size
|
253 |
-
),
|
254 |
-
guidance_scale=1,
|
255 |
-
).to(device, dtype=weight_dtype)
|
256 |
-
neutral_latents = train_util.predict_noise_xl(
|
257 |
-
unet,
|
258 |
-
noise_scheduler,
|
259 |
-
current_timestep,
|
260 |
-
denoised_latents,
|
261 |
-
text_embeddings=train_util.concat_embeddings(
|
262 |
-
prompt_pair.unconditional.text_embeds,
|
263 |
-
prompt_pair.neutral.text_embeds,
|
264 |
-
prompt_pair.batch_size,
|
265 |
-
),
|
266 |
-
add_text_embeddings=train_util.concat_embeddings(
|
267 |
-
prompt_pair.unconditional.pooled_embeds,
|
268 |
-
prompt_pair.neutral.pooled_embeds,
|
269 |
-
prompt_pair.batch_size,
|
270 |
-
),
|
271 |
-
add_time_ids=train_util.concat_embeddings(
|
272 |
-
add_time_ids, add_time_ids, prompt_pair.batch_size
|
273 |
-
),
|
274 |
-
guidance_scale=1,
|
275 |
-
).to(device, dtype=weight_dtype)
|
276 |
-
unconditional_latents = train_util.predict_noise_xl(
|
277 |
-
unet,
|
278 |
-
noise_scheduler,
|
279 |
-
current_timestep,
|
280 |
-
denoised_latents,
|
281 |
-
text_embeddings=train_util.concat_embeddings(
|
282 |
-
prompt_pair.unconditional.text_embeds,
|
283 |
-
prompt_pair.unconditional.text_embeds,
|
284 |
-
prompt_pair.batch_size,
|
285 |
-
),
|
286 |
-
add_text_embeddings=train_util.concat_embeddings(
|
287 |
-
prompt_pair.unconditional.pooled_embeds,
|
288 |
-
prompt_pair.unconditional.pooled_embeds,
|
289 |
-
prompt_pair.batch_size,
|
290 |
-
),
|
291 |
-
add_time_ids=train_util.concat_embeddings(
|
292 |
-
add_time_ids, add_time_ids, prompt_pair.batch_size
|
293 |
-
),
|
294 |
-
guidance_scale=1,
|
295 |
-
).to(device, dtype=weight_dtype)
|
296 |
-
|
297 |
-
if config.logging.verbose:
|
298 |
-
print("positive_latents:", positive_latents[0, 0, :5, :5])
|
299 |
-
print("neutral_latents:", neutral_latents[0, 0, :5, :5])
|
300 |
-
print("unconditional_latents:", unconditional_latents[0, 0, :5, :5])
|
301 |
-
|
302 |
-
with network:
|
303 |
-
target_latents = train_util.predict_noise_xl(
|
304 |
-
unet,
|
305 |
-
noise_scheduler,
|
306 |
-
current_timestep,
|
307 |
-
denoised_latents,
|
308 |
-
text_embeddings=train_util.concat_embeddings(
|
309 |
-
prompt_pair.unconditional.text_embeds,
|
310 |
-
prompt_pair.target.text_embeds,
|
311 |
-
prompt_pair.batch_size,
|
312 |
-
),
|
313 |
-
add_text_embeddings=train_util.concat_embeddings(
|
314 |
-
prompt_pair.unconditional.pooled_embeds,
|
315 |
-
prompt_pair.target.pooled_embeds,
|
316 |
-
prompt_pair.batch_size,
|
317 |
-
),
|
318 |
-
add_time_ids=train_util.concat_embeddings(
|
319 |
-
add_time_ids, add_time_ids, prompt_pair.batch_size
|
320 |
-
),
|
321 |
-
guidance_scale=1,
|
322 |
-
).to(device, dtype=weight_dtype)
|
323 |
-
|
324 |
-
if config.logging.verbose:
|
325 |
-
print("target_latents:", target_latents[0, 0, :5, :5])
|
326 |
-
|
327 |
-
positive_latents.requires_grad = False
|
328 |
-
neutral_latents.requires_grad = False
|
329 |
-
unconditional_latents.requires_grad = False
|
330 |
-
|
331 |
-
loss = prompt_pair.loss(
|
332 |
-
target_latents=target_latents,
|
333 |
-
positive_latents=positive_latents,
|
334 |
-
neutral_latents=neutral_latents,
|
335 |
-
unconditional_latents=unconditional_latents,
|
336 |
-
)
|
337 |
-
|
338 |
-
# 1000倍しないとずっと0.000...になってしまって見た目的に面白くない
|
339 |
-
pbar.set_description(f"Loss*1k: {loss.item()*1000:.4f}")
|
340 |
-
if config.logging.use_wandb:
|
341 |
-
wandb.log(
|
342 |
-
{"loss": loss, "iteration": i, "lr": lr_scheduler.get_last_lr()[0]}
|
343 |
-
)
|
344 |
-
|
345 |
-
loss.backward()
|
346 |
-
optimizer.step()
|
347 |
-
lr_scheduler.step()
|
348 |
-
|
349 |
-
del (
|
350 |
-
positive_latents,
|
351 |
-
neutral_latents,
|
352 |
-
unconditional_latents,
|
353 |
-
target_latents,
|
354 |
-
latents,
|
355 |
-
)
|
356 |
-
flush()
|
357 |
-
|
358 |
-
# if (
|
359 |
-
# i % config.save.per_steps == 0
|
360 |
-
# and i != 0
|
361 |
-
# and i != config.train.iterations - 1
|
362 |
-
# ):
|
363 |
-
# print("Saving...")
|
364 |
-
# save_path.mkdir(parents=True, exist_ok=True)
|
365 |
-
# network.save_weights(
|
366 |
-
# save_path / f"{config.save.name}_{i}steps.pt",
|
367 |
-
# dtype=save_weight_dtype,
|
368 |
-
# )
|
369 |
-
|
370 |
-
print("Saving...")
|
371 |
-
save_path.mkdir(parents=True, exist_ok=True)
|
372 |
-
network.save_weights(
|
373 |
-
save_path / f"{config.save.name}",
|
374 |
-
dtype=save_weight_dtype,
|
375 |
-
)
|
376 |
-
|
377 |
-
del (
|
378 |
-
unet,
|
379 |
-
noise_scheduler,
|
380 |
-
loss,
|
381 |
-
optimizer,
|
382 |
-
network,
|
383 |
-
)
|
384 |
-
|
385 |
-
flush()
|
386 |
-
|
387 |
-
print("Done.")
|
388 |
-
|
389 |
-
|
390 |
-
# def main(args):
|
391 |
-
# config_file = args.config_file
|
392 |
-
|
393 |
-
# config = config_util.load_config_from_yaml(config_file)
|
394 |
-
# if args.name is not None:
|
395 |
-
# config.save.name = args.name
|
396 |
-
# attributes = []
|
397 |
-
# if args.attributes is not None:
|
398 |
-
# attributes = args.attributes.split(',')
|
399 |
-
# attributes = [a.strip() for a in attributes]
|
400 |
-
|
401 |
-
# config.network.alpha = args.alpha
|
402 |
-
# config.network.rank = args.rank
|
403 |
-
# config.save.name += f'_alpha{args.alpha}'
|
404 |
-
# config.save.name += f'_rank{config.network.rank }'
|
405 |
-
# config.save.name += f'_{config.network.training_method}'
|
406 |
-
# config.save.path += f'/{config.save.name}'
|
407 |
-
|
408 |
-
# prompts = prompt_util.load_prompts_from_yaml(config.prompts_file, attributes)
|
409 |
-
|
410 |
-
# device = torch.device(f"cuda:{args.device}")
|
411 |
-
# train(config, prompts, device)
|
412 |
-
|
413 |
-
|
414 |
-
def train_xl(target, postive, negative, lr, iterations, config_file, rank, device, attributes,save_name):
|
415 |
-
|
416 |
-
config = config_util.load_config_from_yaml(config_file)
|
417 |
-
randn = torch.randint(1, 10000000, (1,)).item()
|
418 |
-
config.save.name = save_name
|
419 |
-
|
420 |
-
config.train.lr = float(lr)
|
421 |
-
config.train.iterations=int(iterations)
|
422 |
-
|
423 |
-
if attributes is not None:
|
424 |
-
attributes = attributes.split(',')
|
425 |
-
attributes = [a.strip() for a in attributes]
|
426 |
-
config.network.alpha = 1.0
|
427 |
-
config.network.rank = rank
|
428 |
-
|
429 |
-
config.save.path += f'/{config.save.name}'
|
430 |
-
|
431 |
-
prompts = prompt_util.load_prompts_from_yaml(path=config.prompts_file, target=target, positive=positive, negative=negative, attributes=attributes)
|
432 |
-
|
433 |
-
device = torch.device(f"cuda:{device}")
|
434 |
-
train(config, prompts, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trainscripts/textsliders/demotrain.py
CHANGED
@@ -12,7 +12,7 @@ import torch
|
|
12 |
from tqdm import tqdm
|
13 |
|
14 |
|
15 |
-
from lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
16 |
import train_util
|
17 |
import model_util
|
18 |
import prompt_util
|
|
|
12 |
from tqdm import tqdm
|
13 |
|
14 |
|
15 |
+
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
16 |
import train_util
|
17 |
import model_util
|
18 |
import prompt_util
|