Spaces:
Runtime error
Runtime error
File size: 5,018 Bytes
d262231 ffa1767 1c71a80 ffa1767 9ad68db ffa1767 1c71a80 5673c7d ffa1767 a77192d ffa1767 9ad68db ffa1767 9ad68db ffa1767 0c2114f ffa1767 9ad68db ffa1767 5776c8c ffa1767 5673c7d ffa1767 5673c7d ffa1767 5673c7d ffa1767 5673c7d ffa1767 5673c7d ffa1767 9ad68db ffa1767 9ad68db ffa1767 9ad68db ffa1767 9ad68db ffa1767 9ad68db ffa1767 5673c7d ffa1767 9ad68db ffa1767 9ad68db ffa1767 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import numpy as np
import os, time, librosa, torch
from pyannote.audio import Pipeline
from transformers import pipeline
from utils import second_to_timecode, download_from_youtube
MODEL_NAME = 'bayartsogt/whisper-large-v2-mn-13'
lang = 'mn'
chunk_length_s = 9
vad_activation_min_duration = 9 # sec
device = 0 if torch.cuda.is_available() else "cpu"
SAMPLE_RATE = 16_000
######## LOAD MODELS FROM HUB ########
dia_model = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=os.environ['TOKEN'])
vad_model = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=os.environ['TOKEN'])
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=chunk_length_s, device=device)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
print("----------> Loaded models <-----------")
def generator(youtube_link, microphone, file_upload, num_speakers, max_duration, history):
if int(youtube_link != '') + int(microphone is not None) + int(file_upload is not None) != 1:
raise Exception(f"Only one of the source should be given youtube_link={youtube_link}, microphone={microphone}, file_upload={file_upload}")
history = history or ""
if microphone:
path = microphone
elif file_upload:
path = file_upload
elif youtube_link:
path = download_from_youtube(youtube_link)
waveform, sampling_rate = librosa.load(path, sr=SAMPLE_RATE, mono=True, duration=max_duration)
print(waveform.shape, sampling_rate)
waveform_tensor = torch.unsqueeze(torch.tensor(waveform), 0).to(device)
dia_result = dia_model({
"waveform": waveform_tensor,
"sample_rate": sampling_rate,
}, num_speakers=num_speakers)
counter = 1
for speech_turn, track, speaker in dia_result.itertracks(yield_label=True):
print(f"{speech_turn.start:4.1f} {speech_turn.end:4.1f} {speaker}")
_start = int(sampling_rate * speech_turn.start)
_end = int(sampling_rate * speech_turn.end)
data = waveform[_start: _end]
if speech_turn.end - speech_turn.start > vad_activation_min_duration:
print(f'audio duration {speech_turn.end - speech_turn.start} sec ----> activating VAD')
vad_output = vad_model({
'waveform': waveform_tensor[:, _start:_end],
'sample_rate': sampling_rate})
for vad_turn in vad_output.get_timeline().support():
vad_start = _start + int(sampling_rate * vad_turn.start)
vad_end = _start + int(sampling_rate * vad_turn.end)
prediction = pipe(waveform[vad_start: vad_end])['text']
history += f"{counter}\n" + \
f"{second_to_timecode(speech_turn.start + vad_turn.start)} --> {second_to_timecode(speech_turn.start + vad_turn.end)}\n" + \
f"{prediction}\n\n"
# f">> {speaker}: {prediction}\n\n"
yield history, history, None
counter += 1
else:
prediction = pipe(data)['text']
history += f"{counter}\n" + \
f"{second_to_timecode(speech_turn.start)} --> {second_to_timecode(speech_turn.end)}\n" + \
f"{prediction}\n\n"
# f">> {speaker}: {prediction}\n\n"
counter += 1
yield history, history, None
# https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats%2Csubrip-srt-example%2Csubviewer-sbv-example
file_name = 'transcript.srt'
with open(file_name, 'w') as fp:
fp.write(history)
yield history, history, file_name
demo = gr.Interface(
generator,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", optional=True),
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
gr.Number(value=1, label="Number of Speakers"),
gr.Number(value=120, label="Maximum Duration (Seconds)"),
'state',
],
outputs=['text', 'state', 'file'],
layout="horizontal",
theme="huggingface",
title="Transcribe Mongolian Whisper 🇲🇳",
description=(
"Transcribe Youtube Video / Microphone / Uploaded File in Mongolian Whisper Model." + \
" | You can upload SubRip file (`.srt`) [to your youtube video](https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats)." + \
" | Please REFRESH 🔄 the page after you transcribed!" + \
" | 🐦 [@_tsogoo_](https://twitter.com/_tsogoo_)" + \
" | 🤗 [@bayartsogt](https://huggingface.co/bayartsogt)" + \
""
),
allow_flagging="never",
)
# define queue - required for generators
demo.queue()
demo.launch() |