Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from email import generator
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from PIL import Image, ImageDraw, ImageFont
|
7 |
+
## VAE - Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
8 |
+
from diffusers import AutoencoderKL
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
model = "stabilityai/stable-diffusion-xl-base-1.0"
|
14 |
+
finetuningLayer = "bbsgp/10xFWDLora"
|
15 |
+
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
torch_dtype = torch.float16 if device.type == 'cuda' else torch.float32
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
import os
|
22 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
23 |
+
|
24 |
+
from huggingface_hub import login
|
25 |
+
login(token=HF_API_TOKEN)
|
26 |
+
|
27 |
+
|
28 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype)
|
29 |
+
pipe = DiffusionPipeline.from_pretrained(
|
30 |
+
model,
|
31 |
+
vae=vae,
|
32 |
+
torch_dtype=torch_dtype,
|
33 |
+
use_safetensors=True
|
34 |
+
)
|
35 |
+
pipe.load_lora_weights(finetuningLayer)
|
36 |
+
|
37 |
+
pipe = pipe.to(device)
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
def create_error_image(message):
|
43 |
+
# Create a blank image with white background
|
44 |
+
width, height = 512, 512
|
45 |
+
image = Image.new('RGB', (width, height), 'white')
|
46 |
+
draw = ImageDraw.Draw(image)
|
47 |
+
|
48 |
+
# Load a truetype or opentype font file
|
49 |
+
font = ImageFont.load_default()
|
50 |
+
|
51 |
+
# Position and message
|
52 |
+
|
53 |
+
draw.text((127,251), message, font=font, fill="black")
|
54 |
+
|
55 |
+
return image
|
56 |
+
|
57 |
+
def inference(model,finetuningLayer, prompt, guidance, steps, seed):
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
if not prompt:
|
62 |
+
return create_error_image("Sorry, add your text prompt and try again!!")
|
63 |
+
else:
|
64 |
+
generator = torch.Generator(device).manual_seed(seed)
|
65 |
+
image = pipe(
|
66 |
+
prompt,
|
67 |
+
num_inference_steps=int(steps),
|
68 |
+
guidance_scale=guidance,
|
69 |
+
generator=generator).images[0]
|
70 |
+
|
71 |
+
return image
|
72 |
+
|
73 |
+
|
74 |
+
css = """
|
75 |
+
<style>
|
76 |
+
.finetuned-diffusion-div {
|
77 |
+
text-align: center;
|
78 |
+
max-width: 700px;
|
79 |
+
margin: 0 auto;
|
80 |
+
}
|
81 |
+
.finetuned-diffusion-div div {
|
82 |
+
display: inline-flex;
|
83 |
+
align-items: center;
|
84 |
+
gap: 0.8rem;
|
85 |
+
font-size: 1.75rem;
|
86 |
+
}
|
87 |
+
.finetuned-diffusion-div div h1 {
|
88 |
+
font-weight: 900;
|
89 |
+
margin-bottom: 7px;
|
90 |
+
}
|
91 |
+
.finetuned-diffusion-div p {
|
92 |
+
margin-bottom: 10px;
|
93 |
+
font-size: 94%;
|
94 |
+
}
|
95 |
+
.finetuned-diffusion-div p a {
|
96 |
+
text-decoration: underline;
|
97 |
+
}
|
98 |
+
</style>
|
99 |
+
"""
|
100 |
+
with gr.Blocks(css=css) as demo:
|
101 |
+
gr.HTML(
|
102 |
+
"""
|
103 |
+
<div class="finetuned-diffusion-div">
|
104 |
+
<div>
|
105 |
+
<h1>Finetuned Diffusion</h1>
|
106 |
+
</div>
|
107 |
+
</div>
|
108 |
+
"""
|
109 |
+
)
|
110 |
+
with gr.Row():
|
111 |
+
|
112 |
+
with gr.Column():
|
113 |
+
|
114 |
+
model = gr.Dropdown(label="baseModel",choices=[model], default=model)
|
115 |
+
finetuningLayer= gr.Dropdown(label="Finetuning Layer", choices=[finetuningLayer], default=finetuningLayer)
|
116 |
+
prompt = gr.Textbox(label="Prompt", placeholder="photo of McDBigMac - it is unique identifier need to be used to identify burgers")
|
117 |
+
|
118 |
+
|
119 |
+
with gr.Accordion("Advanced options", open=True):
|
120 |
+
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
121 |
+
steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2)
|
122 |
+
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
123 |
+
|
124 |
+
run = gr.Button(value="Run")
|
125 |
+
gr.Markdown(f"Running on: {device}")
|
126 |
+
with gr.Column():
|
127 |
+
image_out = gr.Image()
|
128 |
+
|
129 |
+
## Add prompt and press enter to run
|
130 |
+
##prompt.submit(inference, inputs=[model, finetuningLayer,prompt, guidance, steps, seed], outputs=image_out)
|
131 |
+
|
132 |
+
## Click run button to run
|
133 |
+
run.click(inference, inputs=[model, finetuningLayer, prompt, guidance, steps, seed], outputs=image_out)
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
demo.queue()
|
138 |
+
demo.launch()
|