File size: 3,986 Bytes
29b2705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import torch.nn as nn
import torch.nn.functional as F


class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv1d(in_channels, mid_channels, kernel_size=3, padding=1),
            nn.GroupNorm(num_groups=4, num_channels=mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv1d(mid_channels, out_channels, kernel_size=3, padding=1),
            nn.GroupNorm(num_groups=4, num_channels=out_channels),
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        return self.double_conv(x)


class DoubleConvX(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv1d(in_channels, mid_channels, kernel_size=15, padding=7),
            nn.GroupNorm(num_groups=8, num_channels=mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv1d(mid_channels, out_channels, kernel_size=15, padding=7),
            nn.GroupNorm(num_groups=8, num_channels=out_channels),
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        return self.double_conv(x)


class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool1d(2), DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)


class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()

        self.up = nn.Upsample(scale_factor=2, mode="linear", align_corners=True)
        self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffX = x2.size()[2] - x1.size()[2]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)


class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        return self.conv(x)


class UNet1d(nn.Module):
    def __init__(self, n_channels, n_classes, nfilter=24):
        super(UNet1d, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes

        self.inc = DoubleConv(n_channels, nfilter)
        self.down1 = Down(nfilter, nfilter * 2)
        self.down2 = Down(nfilter * 2, nfilter * 4)
        self.down3 = Down(nfilter * 4, nfilter * 8)
        self.down4 = Down(nfilter * 8, nfilter * 8)
        self.up1 = Up(nfilter * 16, nfilter * 4)
        self.up2 = Up(nfilter * 8, nfilter * 2)
        self.up3 = Up(nfilter * 4, nfilter * 1)
        self.up4 = Up(nfilter * 2, nfilter)
        self.outc = OutConv(nfilter, n_classes)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.outc(x)
        return logits


if __name__ == "__main__":
    model = UNet1d(1, 1)
    print(model)