import torch import torch.nn as nn import torch.nn.functional as F class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv1d(in_channels, mid_channels, kernel_size=3, padding=1), nn.GroupNorm(num_groups=4, num_channels=mid_channels), nn.ReLU(inplace=True), nn.Conv1d(mid_channels, out_channels, kernel_size=3, padding=1), nn.GroupNorm(num_groups=4, num_channels=out_channels), nn.ReLU(inplace=True), ) def forward(self, x): return self.double_conv(x) class DoubleConvX(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv1d(in_channels, mid_channels, kernel_size=15, padding=7), nn.GroupNorm(num_groups=8, num_channels=mid_channels), nn.ReLU(inplace=True), nn.Conv1d(mid_channels, out_channels, kernel_size=15, padding=7), nn.GroupNorm(num_groups=8, num_channels=out_channels), nn.ReLU(inplace=True), ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool1d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.up = nn.Upsample(scale_factor=2, mode="linear", align_corners=True) self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffX = x2.size()[2] - x1.size()[2] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2]) # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) class UNet1d(nn.Module): def __init__(self, n_channels, n_classes, nfilter=24): super(UNet1d, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.inc = DoubleConv(n_channels, nfilter) self.down1 = Down(nfilter, nfilter * 2) self.down2 = Down(nfilter * 2, nfilter * 4) self.down3 = Down(nfilter * 4, nfilter * 8) self.down4 = Down(nfilter * 8, nfilter * 8) self.up1 = Up(nfilter * 16, nfilter * 4) self.up2 = Up(nfilter * 8, nfilter * 2) self.up3 = Up(nfilter * 4, nfilter * 1) self.up4 = Up(nfilter * 2, nfilter) self.outc = OutConv(nfilter, n_classes) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits if __name__ == "__main__": model = UNet1d(1, 1) print(model)