add musique metric
Browse files- musique.py +109 -29
- tests.py +4 -14
musique.py
CHANGED
@@ -13,6 +13,10 @@
|
|
13 |
# limitations under the License.
|
14 |
"""TODO: Add a description here."""
|
15 |
|
|
|
|
|
|
|
|
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
|
@@ -26,40 +30,37 @@ year={2020}
|
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
-
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
|
|
|
|
|
|
32 |
"""
|
33 |
|
34 |
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
Calculates how good are predictions given some references, using certain scores
|
38 |
Args:
|
39 |
-
predictions: list of
|
40 |
-
|
41 |
-
|
42 |
-
reference should be a string with tokens separated by spaces.
|
43 |
Returns:
|
44 |
-
|
45 |
-
|
46 |
Examples:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
>>> print(results)
|
53 |
-
{'
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class musique(evaluate.Metric):
|
62 |
-
"""TODO:
|
63 |
|
64 |
def _info(self):
|
65 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
@@ -70,26 +71,105 @@ class musique(evaluate.Metric):
|
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
-
features=datasets.Features(
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
# Homepage of the module for documentation
|
78 |
homepage="http://module.homepage",
|
79 |
# Additional links to the codebase or references
|
80 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
)
|
83 |
|
84 |
def _download_and_prepare(self, dl_manager):
|
85 |
"""Optional: download external resources useful to compute the scores"""
|
86 |
-
# TODO: Download external resources if needed
|
87 |
pass
|
88 |
|
89 |
def _compute(self, predictions, references):
|
90 |
"""Returns the scores"""
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return {
|
94 |
-
"
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# limitations under the License.
|
14 |
"""TODO: Add a description here."""
|
15 |
|
16 |
+
import re
|
17 |
+
import string
|
18 |
+
import collections
|
19 |
+
from typing import Callable
|
20 |
import evaluate
|
21 |
import datasets
|
22 |
|
|
|
30 |
}
|
31 |
"""
|
32 |
|
|
|
33 |
_DESCRIPTION = """\
|
34 |
+
Question-answering metrics (`Exact Match` and `F1`) for Musique-Answerable dataset.
|
35 |
+
|
36 |
+
The implementation is taken from Musique repository.
|
37 |
+
https://github.com/StonyBrookNLP/musique
|
38 |
"""
|
39 |
|
40 |
|
|
|
41 |
_KWARGS_DESCRIPTION = """
|
42 |
Calculates how good are predictions given some references, using certain scores
|
43 |
Args:
|
44 |
+
predictions: list of predicted answers.
|
45 |
+
references: list of ground truth answers. Each reference should be a list of
|
46 |
+
ground truth answers for the corresponding prediction.
|
|
|
47 |
Returns:
|
48 |
+
exact_match: Exact match score,
|
49 |
+
f1: F1 score over tokens
|
50 |
Examples:
|
51 |
+
>>> my_new_module = evaluate.load("musique")
|
52 |
+
>>> results = my_new_module.compute(
|
53 |
+
references=[["New York City", "NYC"], ["Einstein", "Albert Einstein"]],
|
54 |
+
predictions=["New York City", "Albert Einstein"],
|
55 |
+
)
|
56 |
>>> print(results)
|
57 |
+
{'exact_match': 1.0, 'f1': 1.0}
|
58 |
"""
|
59 |
|
|
|
|
|
|
|
60 |
|
61 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
62 |
class musique(evaluate.Metric):
|
63 |
+
"""TODO: Question answering metrics (EM and F1) for Musique-Answerable dataset."""
|
64 |
|
65 |
def _info(self):
|
66 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
|
71 |
citation=_CITATION,
|
72 |
inputs_description=_KWARGS_DESCRIPTION,
|
73 |
# This defines the format of each prediction and reference
|
74 |
+
features=datasets.Features(
|
75 |
+
{
|
76 |
+
"predictions": datasets.features.Sequence(datasets.Value("string")),
|
77 |
+
"references": datasets.features.Sequence(
|
78 |
+
datasets.features.Sequence(datasets.Value("string"))
|
79 |
+
),
|
80 |
+
}
|
81 |
+
),
|
82 |
# Homepage of the module for documentation
|
83 |
homepage="http://module.homepage",
|
84 |
# Additional links to the codebase or references
|
85 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
86 |
+
reference_urls=["http://path.to.reference.url/new_module"],
|
87 |
)
|
88 |
|
89 |
def _download_and_prepare(self, dl_manager):
|
90 |
"""Optional: download external resources useful to compute the scores"""
|
|
|
91 |
pass
|
92 |
|
93 |
def _compute(self, predictions, references):
|
94 |
"""Returns the scores"""
|
95 |
+
|
96 |
+
if len(predictions) != len(references):
|
97 |
+
raise ValueError(
|
98 |
+
"The number of predictions and references should be the same."
|
99 |
+
)
|
100 |
+
|
101 |
+
if len(predictions) == 0:
|
102 |
+
return {"exact_match": 0.0, "f1": 0.0}
|
103 |
+
|
104 |
+
exact_scores = [
|
105 |
+
metric_max_over_ground_truths(compute_exact, prediction, reference)
|
106 |
+
for prediction, reference in zip(predictions, references)
|
107 |
+
]
|
108 |
+
f1_scores = [
|
109 |
+
metric_max_over_ground_truths(compute_f1, prediction, reference)
|
110 |
+
for prediction, reference in zip(predictions, references)
|
111 |
+
]
|
112 |
return {
|
113 |
+
"exact_match": sum(exact_scores) / len(exact_scores),
|
114 |
+
"f1": sum(f1_scores) / len(f1_scores),
|
115 |
+
}
|
116 |
+
|
117 |
+
|
118 |
+
# Source: https://github.com/StonyBrookNLP/musique/blob/main/metrics/answer.py
|
119 |
+
|
120 |
+
|
121 |
+
def normalize_answer(s):
|
122 |
+
"""Lower text and remove punctuation, articles and extra whitespace."""
|
123 |
+
|
124 |
+
def remove_articles(text):
|
125 |
+
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
|
126 |
+
return re.sub(regex, " ", text)
|
127 |
+
|
128 |
+
def white_space_fix(text):
|
129 |
+
return " ".join(text.split())
|
130 |
+
|
131 |
+
def remove_punc(text):
|
132 |
+
exclude = set(string.punctuation)
|
133 |
+
return "".join(ch for ch in text if ch not in exclude)
|
134 |
+
|
135 |
+
def lower(text):
|
136 |
+
return text.lower()
|
137 |
+
|
138 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
139 |
+
|
140 |
+
|
141 |
+
def get_tokens(s):
|
142 |
+
if not s:
|
143 |
+
return []
|
144 |
+
return normalize_answer(s).split()
|
145 |
+
|
146 |
+
|
147 |
+
def compute_exact(a_gold, a_pred):
|
148 |
+
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
|
149 |
+
|
150 |
+
|
151 |
+
def compute_f1(a_gold, a_pred):
|
152 |
+
gold_toks = get_tokens(a_gold)
|
153 |
+
pred_toks = get_tokens(a_pred)
|
154 |
+
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
|
155 |
+
num_same = sum(common.values())
|
156 |
+
if len(gold_toks) == 0 or len(pred_toks) == 0:
|
157 |
+
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
|
158 |
+
return int(gold_toks == pred_toks)
|
159 |
+
if num_same == 0:
|
160 |
+
return 0
|
161 |
+
precision = 1.0 * num_same / len(pred_toks)
|
162 |
+
recall = 1.0 * num_same / len(gold_toks)
|
163 |
+
f1 = (2 * precision * recall) / (precision + recall)
|
164 |
+
return f1
|
165 |
+
|
166 |
+
|
167 |
+
def metric_max_over_ground_truths(
|
168 |
+
metric_fn: Callable[[str, str], float],
|
169 |
+
prediction: str,
|
170 |
+
ground_truths: list[str],
|
171 |
+
) -> float:
|
172 |
+
scores_for_ground_truths = [
|
173 |
+
metric_fn(prediction, ground_truth) for ground_truth in ground_truths
|
174 |
+
]
|
175 |
+
return max(scores_for_ground_truths)
|
tests.py
CHANGED
@@ -1,17 +1,7 @@
|
|
1 |
test_cases = [
|
2 |
{
|
3 |
-
"predictions": [
|
4 |
-
"references": [
|
5 |
-
"result": {"
|
6 |
},
|
7 |
-
|
8 |
-
"predictions": [1, 1],
|
9 |
-
"references": [1, 1],
|
10 |
-
"result": {"metric_score": 1}
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"predictions": [1, 0],
|
14 |
-
"references": [1, 1],
|
15 |
-
"result": {"metric_score": 0.5}
|
16 |
-
}
|
17 |
-
]
|
|
|
1 |
test_cases = [
|
2 |
{
|
3 |
+
"predictions": ["New York City", "Albert Einstein"],
|
4 |
+
"references": [["New York City", "NYC"], ["Einstein", "Albert Einstein"]],
|
5 |
+
"result": {"exact_match": 1.0, "f1": 1.0},
|
6 |
},
|
7 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|