File size: 11,929 Bytes
92e0882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from collections import defaultdict
import json
import argparse
import os
import random

import torch
from PIL import Image
from tqdm import tqdm

from interpreter import *
from executor import *
from methods import *

METHODS_MAP = {
    "baseline": Baseline,
    "random": Random,
    "parse": Parse,
}

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--input_file", type=str, help="input file with expressions and annotations in jsonlines format")
    parser.add_argument("--image_root", type=str, help="path to images (train2014 directory of COCO)")
    parser.add_argument("--clip_model", type=str, default="RN50x16,ViT-B/32", help="which clip model to use (should use RN50x4, ViT-B/32, or both separated by a comma")
    parser.add_argument("--clip_type", type=str, default="aclip", help="which clip model to use (should use RN50x4, ViT-B/32, or both separated by a comma")
    parser.add_argument("--albef_path", type=str, default=None, help="to use ALBEF (instead of CLIP), specify the path to the ALBEF checkpoint")
    parser.add_argument("--method", type=str, default="parse", help="method to solve expressions")
    parser.add_argument("--box_representation_method", type=str, default="crop,blur", help="method of representing boxes as individual images (crop, blur, or both separated by a comma)")
    parser.add_argument("--box_method_aggregator", type=str, default="sum", help="method of combining box representation scores")
    parser.add_argument("--box_area_threshold", type=float, default=0.0, help="minimum area (as a proportion of image area) for a box to be considered as the answer")
    parser.add_argument("--output_file", type=str, default=None, help="(optional) output path to save results")
    parser.add_argument("--detector_file", type=str, default=None, help="(optional) file containing object detections. if not provided, the gold object boxes will be used.")
    parser.add_argument("--mock", action="store_true", help="(optional) mock CLIP execution.")
    parser.add_argument("--device", type=int, default=0, help="CUDA device to use.")
    parser.add_argument("--shuffle_words", action="store_true", help="If true, shuffle words in the sentence")
    parser.add_argument("--gradcam_alpha", type=float, nargs='+', help="alpha value to use for gradcam method")
    parser.add_argument("--enlarge_boxes", type=float, default=0.0, help="(optional) whether to enlarge boxes when passing them to the model")
    parser.add_argument("--part", type=str, default=None, help="(optional) specify how many parts to divide the dataset into and which part to run in the format NUM_PARTS,PART_NUM")
    parser.add_argument("--batch_size", type=int, default=1, help="number of instances to process in one model call (only supported for baseline model)")
    parser.add_argument("--baseline_head", action="store_true", help="For baseline, controls whether model is called on both full expression and head noun chunk of expression")
    parser.add_argument("--mdetr", type=str, default=None, help="to use MDETR as the executor model, specify the name of the MDETR model")
    parser.add_argument("--albef_block_num", type=int, default=8, help="block num for ALBEF gradcam")
    parser.add_argument("--albef_mode", type=str, choices=["itm", "itc"], default="itm")
    parser.add_argument("--expand_position_embedding",action="store_true")
    parser.add_argument("--gradcam_background", action="store_true")
    parser.add_argument("--mdetr_given_bboxes", action="store_true")
    parser.add_argument("--mdetr_use_token_mapping", action="store_true")
    parser.add_argument("--non_square_size", action="store_true")
    parser.add_argument("--blur_std_dev", type=int, default=100, help="standard deviation of Gaussian blur")
    parser.add_argument("--gradcam_ensemble_before", action="store_true", help="Average gradcam maps of different models before summing over the maps")
    parser.add_argument("--cache_path", type=str, default=None, help="cache features")
    # Arguments related to Parse method.
    parser.add_argument("--no_rel", action="store_true", help="Disable relation extraction.")
    parser.add_argument("--no_sup", action="store_true", help="Disable superlative extraction.")
    parser.add_argument("--no_null", action="store_true", help="Disable null keyword heuristics.")
    parser.add_argument("--ternary", action="store_true", help="Disable ternary relation extraction.")
    parser.add_argument("--baseline_threshold", type=float, default=float("inf"), help="(Parse) Threshold to use relations/superlatives.")
    parser.add_argument("--temperature", type=float, default=1., help="(Parse) Sigmoid temperature.")
    parser.add_argument("--superlative_head_only", action="store_true", help="(Parse) Superlatives only quanntify head predicate.")
    parser.add_argument("--sigmoid", action="store_true", help="(Parse) Use sigmoid, not softmax.")
    parser.add_argument("--no_possessive", action="store_true", help="(Parse) Model extraneous relations as possessive relations.")
    parser.add_argument("--expand_chunks", action="store_true", help="(Parse) Expand noun chunks to include descendant tokens that aren't ancestors of tokens in other chunks")
    parser.add_argument("--parse_no_branch", action="store_true", help="(Parse) Only do the parsing procedure if some relation/superlative keyword is in the expression")
    parser.add_argument("--possessive_no_expand", action="store_true", help="(Parse) Expand ent2 in possessive case")
    args = parser.parse_args()

    with open(args.input_file) as f: 
        lines = f.readlines()
        data = [json.loads(line) for line in lines]

    device = f"cuda:{args.device}" if torch.cuda.is_available() and args.device >= 0 else "cpu"
    gradcam = args.method == "gradcam"

    executor = ClipExecutor(clip_model=args.clip_model, box_representation_method=args.box_representation_method, method_aggregator=args.box_method_aggregator, device=device, square_size=not args.non_square_size, expand_position_embedding=args.expand_position_embedding, blur_std_dev=args.blur_std_dev, cache_path=args.cache_path, input_file=args.input_file, clip_type=args.clip_type)

    method = METHODS_MAP[args.method](args)
    correct_count = 0
    total_count = 0
    if args.output_file:
        output_file = open(args.output_file, "w")
    if args.detector_file:
        detector_file = open(args.detector_file)
        detections_list = json.load(detector_file)
        if isinstance(detections_list, dict):
            detections_map = {int(image_id): detections_list[image_id] for image_id in detections_list}
        else:
            detections_map = defaultdict(list)
            for detection in detections_list:
                detections_map[detection["image_id"]].append(detection["box"])
    
    part = 0
    if args.part is not None: # for multi-gpu test / part-data test
        num_parts = int(args.part.split(",")[0])
        part = int(args.part.split(",")[1])
        data = data[int(len(data)*part/num_parts):int(len(data)*(part+1)/num_parts)]

    batch_count = 0
    batch_boxes = []
    batch_gold_boxes = []
    batch_gold_index = []
    batch_file_names = []
    batch_sentences = []
    for datum in tqdm(data):
        if "coco" in datum["file_name"].lower():
            file_name = "_".join(datum["file_name"].split("_")[:-1])+".jpg"
        else:
            file_name = datum["file_name"]
        img_path = os.path.join(args.image_root, file_name)
        img = Image.open(img_path).convert('RGB')
        gold_boxes = [Box(x=ann["bbox"][0], y=ann["bbox"][1], w=ann["bbox"][2], h=ann["bbox"][3]) for ann in datum["anns"]]
        if isinstance(datum["ann_id"], int) or isinstance(datum["ann_id"], str):
            datum["ann_id"] = [datum["ann_id"]]
        assert isinstance(datum["ann_id"], list)
        gold_index = [i for i in range(len(datum["anns"])) if datum["anns"][i]["id"] in datum["ann_id"]] 
        if args.detector_file:
                boxes = [Box(x=box[0], y=box[1], w=box[2], h=box[3]) for box in detections_map[int(datum["image_id"])]]
                if len(boxes) == 0:
                    boxes = [Box(x=0, y=0, w=img.width, h=img.height)]
        else:
            boxes = gold_boxes
        for sentence in datum["sentences"]:
            env = Environment(img, boxes, executor, (args.mdetr is not None and not args.mdetr_given_bboxes), str(datum["image_id"]), img_path) 
            if args.shuffle_words:
                words = sentence["raw"].lower().split()
                random.shuffle(words)
                result = method.execute(" ".join(words), env)
            else:
                result = method.execute(sentence["raw"].lower(), env)
            boxes = env.boxes
            print(sentence["raw"].lower())
            correct = False
            for g_index in gold_index:
                if iou(boxes[result["pred"]], gold_boxes[g_index]) > 0.5:
                    correct = True
                    break
            if correct:
                result["correct"] = 1
                correct_count += 1
            else:
                result["correct"] = 0
            if args.detector_file:
                argmax_ious = []
                max_ious = []
                for g_index in gold_index:
                    ious = [iou(box, gold_boxes[g_index]) for box in boxes]
                    argmax_iou = -1
                    max_iou = 0
                    if max(ious) >= 0.5:
                        for index, value in enumerate(ious):
                            if value > max_iou:
                                max_iou = value
                                argmax_iou = index
                    argmax_ious.append(argmax_iou)
                    max_ious.append(max_iou)
                argmax_iou = -1
                max_iou = 0
                if max(max_ious) >= 0.5:
                    for index, value in zip(argmax_ious, max_ious):
                        if value > max_iou:
                            max_iou = value
                            argmax_iou = index
                result["gold_index"] = argmax_iou
            else:
                result["gold_index"] = gold_index
            result["bboxes"] = [[box.left, box.top, box.right, box.bottom] for box in boxes]
            result["file_name"] = file_name
            result["probabilities"] = result["probs"]
            result["text"] = sentence["raw"].lower()
            if args.output_file:
                # Serialize numpy arrays for JSON.
                for key in result:
                    if isinstance(result[key], np.ndarray):
                        result[key] = result[key].tolist()
                    if isinstance(result[key], np.int64):
                        result[key] = result[key].item()
                output_file.write(json.dumps(result)+"\n")
            total_count += 1
            print(f"est_acc: {100 * correct_count / total_count:.3f}")

    if args.output_file:
        output_file.close()
    print(f"acc: {100 * correct_count / total_count:.3f}")
    acc = 100 * correct_count / total_count
    
    result = {}
    result['acc'] = acc
    json.dump(acc, open(os.path.join('./output', args.input_file.split('/')[-1].split('.')[0] + '_acc_' + str(part)+'.json'),'w'))
    json.dump(str(correct_count)+' '+str(total_count), open(os.path.join('./output', args.input_file.split('/')[-1].split('.')[0] + '_count_' + str(part)+'.json'),'w'))
    stats = method.get_stats()
    if stats:
        pairs = sorted(list(stats.items()), key=lambda tup: tup[0])
        for key, value in pairs:
            result[key] = value
            if isinstance(value, float):
                print(f"{key}: {value:.5f}")
            else:
                print(f"{key}: {value}")

    json.dump(result, open(os.path.join('./output', args.input_file.split('/')[-1].split('.')[0] + '_' + str(part)+'.json'),'w'))