File size: 5,057 Bytes
92e0882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import json
import os
import random
from tqdm import tqdm
from torch.utils.data import Dataset
from pycocotools.coco import COCO
from pycocotools import mask as maskUtils
from PIL import Image
import cv2
import random
from torchvision import transforms
from tqdm import tqdm

import pickle
import torch
import numpy as np
import copy
import sys
import shutil
from PIL import Image
from nltk.corpus import wordnet

PIXEL_MEAN = (0.48145466, 0.4578275, 0.40821073)
MASK_FILL = [int(255 * c) for c in PIXEL_MEAN]


clip_standard_transform = transforms.Compose([
    transforms.ToTensor(), 
    transforms.Resize((224, 224), interpolation=Image.BICUBIC),
    transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])

hi_clip_standard_transform = transforms.Compose([
    transforms.ToTensor(), 
    transforms.Resize((336, 336), interpolation=Image.BICUBIC),
    transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])

res_clip_standard_transform = transforms.Compose([
    transforms.ToTensor(), 
    transforms.Resize((336, 336), interpolation=Image.BICUBIC),
    transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])

mask_transform = transforms.Compose([
    transforms.ToTensor(), 
    transforms.Resize((224, 224)),
    transforms.Normalize(0.5, 0.26)
])

hi_mask_transform = transforms.Compose([
    transforms.ToTensor(), 
    transforms.Resize((336, 336)),
    transforms.Normalize(0.5, 0.26)
])

res_mask_transform = transforms.Compose([
    transforms.ToTensor(), 
    transforms.Resize((336, 336)),
    transforms.Normalize(0.5, 0.26)
])

def crop_center(img, croph, cropw):
    h, w = img.shape[:2]
    starth = h//2 - (croph//2)
    startw = w//2 - (cropw//2)    
    return img[starth:starth+croph, startw:startw+cropw, :]

class Imagenet_S(Dataset):
    def __init__(self, ann_file='data/imagenet_919.json', hi_res=False, all_one=False):
        self.anns = json.load(open(ann_file, 'r'))
        self.root_pth = 'data/'
        cats = []
        for ann in self.anns:
            if ann['category_word'] not in cats:
                cats.append(ann['category_word'])
            ann['cat_index'] = len(cats) - 1
        self.classes = []
        for cat_word in cats:
            synset = wordnet.synset_from_pos_and_offset('n', int(cat_word[1:]))
            synonyms = [x.name() for x in synset.lemmas()]
            self.classes.append(synonyms[0])
            
        self.choice = "center_crop"
        if hi_res:
            self.mask_transform = res_mask_transform
            self.clip_standard_transform = res_clip_standard_transform
        else:
            self.mask_transform = mask_transform
            self.clip_standard_transform = clip_standard_transform

        self.all_one = all_one

    def __len__(self):
        return len(self.anns)

    def __getitem__(self, index):
        ann = self.anns[index]
        image = cv2.imread(os.path.join(self.root_pth, ann['image_pth']))
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        mask = maskUtils.decode(ann['mask'])
        # image[mask==0] = MASK_FILL
        rgba = np.concatenate((image, np.expand_dims(mask, axis=-1)), axis=-1)
        h, w = rgba.shape[:2]
        
        if self.choice == "padding":
            if max(h, w) == w:
                pad = (w - h) // 2
                l, r = pad, w - h - pad
                rgba = np.pad(rgba, ((l, r), (0, 0), (0, 0)), 'constant', constant_values=0)
            else:
                pad = (h - w) // 2
                l, r = pad, h - w - pad
                rgba = np.pad(rgba, ((0, 0), (l, r), (0, 0)), 'constant', constant_values=0)
        else:
            if min(h, w) == h:
                rgba = crop_center(rgba, h, h)
            else:
                rgba = crop_center(rgba, w, w)
        rgb = rgba[:, :, :-1]
        mask = rgba[:, :, -1]
        image_torch = self.clip_standard_transform(rgb)
        # using box: bounding-box compute
        # bi_mask = mask == 1
        # h, w = bi_mask.shape[-2:]
        # in_height = np.max(bi_mask, axis=-1)
        # in_height_coords = np.max(bi_mask, axis=-1) * np.arange(h)
        # b_e = in_height_coords.max()
        # in_height_coords = in_height_coords + h * (~in_height)
        # t_e = in_height_coords.min()
        # in_width = np.max(bi_mask, axis=-2)
        # in_width_coords = np.max(bi_mask, axis=-2) * np.arange(w)
        # r_e = in_width_coords.max()
        # in_width_coords = in_width_coords + w * (~in_width)
        # l_e = in_width_coords.min()
        # box = np.zeros_like(mask)
        # box[t_e: b_e, l_e:r_e] = 1
        # mask = box
        if self.all_one:
            mask_torch = self.mask_transform(np.ones_like(mask) * 255)
        else: 
            mask_torch = self.mask_transform(mask * 255)
        return image_torch, mask_torch, ann['cat_index']

if __name__ == "__main__":
    data = Imagenet_S()
    for i in tqdm(range(data.__len__())):
        data.__getitem__(i)