File size: 5,057 Bytes
92e0882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import json
import os
import random
from tqdm import tqdm
from torch.utils.data import Dataset
from pycocotools.coco import COCO
from pycocotools import mask as maskUtils
from PIL import Image
import cv2
import random
from torchvision import transforms
from tqdm import tqdm
import pickle
import torch
import numpy as np
import copy
import sys
import shutil
from PIL import Image
from nltk.corpus import wordnet
PIXEL_MEAN = (0.48145466, 0.4578275, 0.40821073)
MASK_FILL = [int(255 * c) for c in PIXEL_MEAN]
clip_standard_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224, 224), interpolation=Image.BICUBIC),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
hi_clip_standard_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((336, 336), interpolation=Image.BICUBIC),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
res_clip_standard_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((336, 336), interpolation=Image.BICUBIC),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
mask_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224, 224)),
transforms.Normalize(0.5, 0.26)
])
hi_mask_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((336, 336)),
transforms.Normalize(0.5, 0.26)
])
res_mask_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((336, 336)),
transforms.Normalize(0.5, 0.26)
])
def crop_center(img, croph, cropw):
h, w = img.shape[:2]
starth = h//2 - (croph//2)
startw = w//2 - (cropw//2)
return img[starth:starth+croph, startw:startw+cropw, :]
class Imagenet_S(Dataset):
def __init__(self, ann_file='data/imagenet_919.json', hi_res=False, all_one=False):
self.anns = json.load(open(ann_file, 'r'))
self.root_pth = 'data/'
cats = []
for ann in self.anns:
if ann['category_word'] not in cats:
cats.append(ann['category_word'])
ann['cat_index'] = len(cats) - 1
self.classes = []
for cat_word in cats:
synset = wordnet.synset_from_pos_and_offset('n', int(cat_word[1:]))
synonyms = [x.name() for x in synset.lemmas()]
self.classes.append(synonyms[0])
self.choice = "center_crop"
if hi_res:
self.mask_transform = res_mask_transform
self.clip_standard_transform = res_clip_standard_transform
else:
self.mask_transform = mask_transform
self.clip_standard_transform = clip_standard_transform
self.all_one = all_one
def __len__(self):
return len(self.anns)
def __getitem__(self, index):
ann = self.anns[index]
image = cv2.imread(os.path.join(self.root_pth, ann['image_pth']))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask = maskUtils.decode(ann['mask'])
# image[mask==0] = MASK_FILL
rgba = np.concatenate((image, np.expand_dims(mask, axis=-1)), axis=-1)
h, w = rgba.shape[:2]
if self.choice == "padding":
if max(h, w) == w:
pad = (w - h) // 2
l, r = pad, w - h - pad
rgba = np.pad(rgba, ((l, r), (0, 0), (0, 0)), 'constant', constant_values=0)
else:
pad = (h - w) // 2
l, r = pad, h - w - pad
rgba = np.pad(rgba, ((0, 0), (l, r), (0, 0)), 'constant', constant_values=0)
else:
if min(h, w) == h:
rgba = crop_center(rgba, h, h)
else:
rgba = crop_center(rgba, w, w)
rgb = rgba[:, :, :-1]
mask = rgba[:, :, -1]
image_torch = self.clip_standard_transform(rgb)
# using box: bounding-box compute
# bi_mask = mask == 1
# h, w = bi_mask.shape[-2:]
# in_height = np.max(bi_mask, axis=-1)
# in_height_coords = np.max(bi_mask, axis=-1) * np.arange(h)
# b_e = in_height_coords.max()
# in_height_coords = in_height_coords + h * (~in_height)
# t_e = in_height_coords.min()
# in_width = np.max(bi_mask, axis=-2)
# in_width_coords = np.max(bi_mask, axis=-2) * np.arange(w)
# r_e = in_width_coords.max()
# in_width_coords = in_width_coords + w * (~in_width)
# l_e = in_width_coords.min()
# box = np.zeros_like(mask)
# box[t_e: b_e, l_e:r_e] = 1
# mask = box
if self.all_one:
mask_torch = self.mask_transform(np.ones_like(mask) * 255)
else:
mask_torch = self.mask_transform(mask * 255)
return image_torch, mask_torch, ann['cat_index']
if __name__ == "__main__":
data = Imagenet_S()
for i in tqdm(range(data.__len__())):
data.__getitem__(i) |