File size: 7,564 Bytes
92e0882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
from typing import NamedTuple, List, Callable
import sys
import re
import numpy as np
import torch
from numpy.linalg import norm
from itertools import product, groupby
from PIL import Image
# Do two line segments intersect? Copied from
# https://stackoverflow.com/questions/3838329/how-can-i-check-if-two-segments-intersect
def ccw(A, B, C):
return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x)
def intersect(A, B, C, D):
"""Do line segments AB and CD intersect?"""
return ccw(A, C, D) != ccw(B, C, D) and ccw(A, B, C) != ccw(A, B, D)
class Box(NamedTuple):
x: int
y: int
w: int = 0
h: int = 0
@property
def left(self):
return self.x
@property
def right(self):
return self.x + self.w
@property
def top(self):
return self.y
@property
def bottom(self):
return self.y + self.h
@property
def center(self):
return Box(self.x + self.w // 2, self.y + self.h // 2)
def corners(self):
yield Box(self.x, self.y)
yield Box(self.x + self.w, self.y)
yield Box(self.x + self.w, self.y + self.h)
yield Box(self.x, self.y + self.h)
@property
def area(self):
return self.w * self.h
def intersect(self, other: "Box") -> "Box":
x1 = max(self.x, other.x)
x2 = max(x1, min(self.x+self.w, other.x+other.w))
y1 = max(self.y, other.y)
y2 = max(y1, min(self.y+self.h, other.y+other.h))
return Box(x=x1, y=y1, w=x2-x1, h=y2-y1)
def min_bounding(self, other: "Box") -> "Box":
corners = list(self.corners())
corners.extend(other.corners())
min_x = min_y = float("inf")
max_x = max_y = -float("inf")
for item in corners:
min_x = min(min_x, item.x)
min_y = min(min_y, item.y)
max_x = max(max_x, item.x)
max_y = max(max_y, item.y)
return Box(min_x, min_y, max_x - min_x, max_y - min_y)
def expand(self, growth: float = .1) -> "Box":
factor = 1 + growth
w = factor * self.w
h = factor * self.h
return Box(min_x - (w - self.w) / 2, min_y - (h - self.h) / 2, w, h)
def iou(box1, box2):
x1 = max(box1.x, box2.x)
x2 = max(x1, min(box1.x+box1.w, box2.x+box2.w))
y1 = max(box1.y, box2.y)
y2 = max(y1, min(box1.y+box1.h, box2.y+box2.h))
intersection = Box(x=x1, y=y1, w=x2-x1, h=y2-y1)
intersection_area = intersection.area
union_area = box1.area+box2.area-intersection_area
return intersection_area / union_area
def all_equal(iterable):
"""Are all elements the same?"""
g = groupby(iterable)
return next(g, True) and not next(g, False)
class spatial:
"""A decorator that converts a predicate over boxes to a function that returns a tensor over all boxes."""
def __init__(self, arity: int = 2, enforce_antisymmetry: bool = False):
self.arity = arity
self.enforce_antisymmetry = enforce_antisymmetry # Zero out any entries where two boxes are the same.
def __call__(self, predicate: Callable[[Box], float]) -> Callable[["Environment"], np.ndarray]:
def _rel(env):
n_boxes = len(env.boxes)
tensor = np.empty([n_boxes for _ in range(self.arity)])
enum_boxes = list(enumerate(env.boxes))
for pairs in product(*[enum_boxes for _ in range(self.arity)]):
indices, boxes = zip(*pairs)
if self.enforce_antisymmetry and len(set(indices)) < len(indices):
tensor[indices] = 0.
else:
tensor[indices] = predicate(*boxes)
return tensor
return _rel
class Environment:
def __init__(self, image: Image, boxes: List[Box], executor: "Executor" = None, freeform_boxes: bool = False, image_name: str = None, image_pth: str=None):
self.image = image
self.boxes = boxes
self.executor = executor # An object or callback that can query CLIP with captions/images.
self.freeform_boxes = freeform_boxes
self.image_name = image_name
self.image_pth=image_pth
def uniform(self) -> np.ndarray:
n_boxes = len(self.boxes)
return 1 / n_boxes * np.ones(n_boxes)
def filter(self,
caption: str,
temperature: float = 1.,
area_threshold: float = 0.0,
softmax: bool = False,
expand: float = None
) -> np.ndarray:
"""Return a new distribution reflecting the likelihood that `caption` describes the content of each box."""
area_filtered_dist = torch.from_numpy(self.filter_area(area_threshold)).to(self.executor.device)
candidate_indices = [i for i in range(len(self.boxes)) if float(area_filtered_dist[i]) > 0.0]
boxes = [self.boxes[i] for i in candidate_indices]
if len(boxes) == 0:
boxes = self.boxes
candidate_indices = list(range(len(boxes)))
if expand is not None:
boxes = [box.expand(expand) for box in boxes]
result_partial = self.executor(caption, self.image, boxes, image_name=self.image_name, image_pth=self.image_pth)
if self.freeform_boxes:
result_partial, boxes = result_partial
self.boxes = [Box(x=boxes[i,0].item(), y=boxes[i,1].item(), w=boxes[i,2].item()-boxes[i,0].item(), h=boxes[i,3].item()-boxes[i,1].item()) for i in range(boxes.shape[0])]
candidate_indices = list(range(len(self.boxes)))
result_partial = result_partial.float()
if not softmax:
result_partial = (result_partial-result_partial.mean()) / (result_partial.std() + 1e-9)
result_partial = (temperature * result_partial).sigmoid()
result = torch.zeros((len(self.boxes))).to(result_partial.device)
result[candidate_indices] = result_partial
else:
result = torch.zeros((len(self.boxes))).to(result_partial.device)
result[candidate_indices] = result_partial.softmax(dim=-1) #softmax结果
return result.cpu().numpy()
def filter_area(self, area_threshold: float) -> np.ndarray:
"""Return a new distribution in which all boxes whose area as a fraction of the image is less than the threshold."""
image_area = self.image.width*self.image.height
return np.array([1 if self.boxes[i].area/image_area > area_threshold else 0 for i in range(len(self.boxes))])
@spatial()
def left_of(b1, b2):
return (b1.right+b1.left) / 2 < (b2.right+b2.left) / 2
@spatial()
def right_of(b1, b2):
return (b1.right+b1.left) / 2 > (b2.right+b2.left) / 2
@spatial()
def above(b1, b2):
return (b1.bottom+b1.top) < (b2.bottom+b2.top)
@spatial()
def below(b1, b2):
return (b1.bottom+b1.top) > (b2.bottom+b2.top)
@spatial()
def bigger_than(b1, b2):
return b1.area > b2.area
@spatial()
def smaller_than(b1, b2):
return b1.area < b2.area
@spatial(enforce_antisymmetry=False)
def within(box1, box2):
"""Return percent of box1 inside box2."""
intersection = box1.intersect(box2)
return intersection.area / box1.area
@spatial(arity=3, enforce_antisymmetry=True)
def between(box1, box2, box3):
"""How much of box1 lies in min bounding box over box2 and box3?"""
min_bounding = box2.min_bounding(box3)
intersect = box1.intersect(min_bounding)
return intersect.area / box1.area
|