bedead commited on
Commit
0fd6c24
·
1 Parent(s): 202135b

added example images

Browse files
Files changed (1) hide show
  1. app.py +21 -3
app.py CHANGED
@@ -1,12 +1,15 @@
1
  import gradio as gr
2
  from ultralytics import YOLO
 
3
 
 
4
  format = { 0: 'Bengin case',
5
  1: 'Bengin case Malignant case',
6
  2: 'Malignant case',
7
  3: 'Malignant case Normal case',
8
  4: 'Normal case'}
9
 
 
10
  def image_classifier(inp):
11
  model = YOLO("best.pt")
12
 
@@ -14,10 +17,25 @@ def image_classifier(inp):
14
  probs = result[0].probs
15
  max_tensor = max(probs)
16
  tensor_pos = ((probs == max_tensor).nonzero(as_tuple=True)[0])
17
-
18
  return format.get(int(tensor_pos))
19
 
20
- web = gr.Interface(fn=image_classifier, inputs="image", outputs="text")
 
 
 
 
 
 
 
21
 
22
- web.launch()
 
 
 
 
 
 
 
23
 
 
 
1
  import gradio as gr
2
  from ultralytics import YOLO
3
+ import os
4
 
5
+ # catgories
6
  format = { 0: 'Bengin case',
7
  1: 'Bengin case Malignant case',
8
  2: 'Malignant case',
9
  3: 'Malignant case Normal case',
10
  4: 'Normal case'}
11
 
12
+ # returning classifiers output
13
  def image_classifier(inp):
14
  model = YOLO("best.pt")
15
 
 
17
  probs = result[0].probs
18
  max_tensor = max(probs)
19
  tensor_pos = ((probs == max_tensor).nonzero(as_tuple=True)[0])
20
+
21
  return format.get(int(tensor_pos))
22
 
23
+ # gradio code block for input and output
24
+ with gr.Blocks() as app:
25
+ gr.Markdown("## Lung Cancer classification using Yolov8")
26
+ with gr.Row():
27
+ inp_img = gr.Image()
28
+ out_txt = gr.Textbox()
29
+ btn = gr.Button(value="Submit")
30
+ btn.click(image_classifier, inputs=inp_img, outputs=out_txt)
31
 
32
+ gr.Markdown("## Image Examples")
33
+ gr.Examples(
34
+ examples=[os.path.join(os.path.dirname(__file__), "1.jpg"), os.path.join(os.path.dirname(__file__), "2.jpg")],
35
+ inputs=inp_img,
36
+ outputs=out_txt,
37
+ fn=image_classifier,
38
+ cache_examples=True,
39
+ )
40
 
41
+ app.launch(share=True)