Spaces:
Running
Running
File size: 4,999 Bytes
edb0494 6405936 edb0494 6405936 edb0494 6405936 7c5e77b 6405936 48483ef 7c5e77b 6405936 7c5e77b 48483ef 6405936 48483ef 6405936 7c5e77b 48483ef 6405936 7c5e77b 6405936 7c5e77b 6405936 7c5e77b 6405936 7c5e77b 6405936 7c5e77b 97567b1 6405936 7c5e77b 6405936 7c5e77b 6405936 7c5e77b 6405936 7c5e77b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
MODELS = {
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device=device, dtype=torch.float16 if device == 'cuda' else torch.float32)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 if device == 'cuda' else torch.float32,
).to(device)
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16 if device == 'cuda' else torch.float32,
vae=vae,
controlnet=model,
#variant="fp16",
).to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
if device == 'cuda':
pipe.enable_model_cpu_offload()
pipe.enable_xformers_memory_efficient_attention()
def fill_image(prompt, image, model_selection, paste_back):
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, "cuda", True)
source = image["background"]
mask = image["layers"][0]
alpha_channel = mask.split()[3]
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
cnet_image = source.copy()
cnet_image.paste(0, (0, 0), binary_mask)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
):
yield image, cnet_image
print(f"{model_selection=}")
print(f"{paste_back=}")
if paste_back:
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), binary_mask)
else:
cnet_image = image
yield source, cnet_image
def clear_result():
return gr.update(value=None)
with gr.Blocks() as demo:
gr.Markdown('# Ai object removal')
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe what to inpaint the mask with",
lines=3,
)
with gr.Column():
model_selection = gr.Dropdown(
choices=list(MODELS.keys()),
value="RealVisXL V5.0 Lightning",
label="Model",
visible = False,
)
with gr.Row():
with gr.Column():
run_button = gr.Button("Generate")
with gr.Column():
paste_back = gr.Checkbox(False, label="Paste back original", visible = False)
with gr.Row():
input_image = gr.ImageMask(
type="pil", label="Input Image", layers=False
)
result = ImageSlider(
interactive=False,
label="Generated Image",
)
use_as_input_button = gr.Button("Use as Input Image", visible=False)
def use_output_as_input(output_image):
return gr.update(value=output_image[1])
use_as_input_button.click(
fn=use_output_as_input, inputs=[result], outputs=[input_image]
)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection, paste_back],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
prompt.submit(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection, paste_back],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
demo.launch(share=True,debug = True) |