bedead commited on
Commit
9e6119d
·
verified ·
1 Parent(s): a99ac61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -28,7 +28,7 @@ state_dict = load_state_dict(model_file)
28
  model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
29
  controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
30
  )
31
- model.to(device="cuda", dtype=torch.float16)
32
 
33
  vae = AutoencoderKL.from_pretrained(
34
  "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
@@ -40,7 +40,7 @@ pipe = StableDiffusionXLFillPipeline.from_pretrained(
40
  vae=vae,
41
  controlnet=model,
42
  variant="fp16",
43
- ).to("cuda")
44
 
45
  pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
46
 
@@ -50,10 +50,9 @@ prompt = "high quality"
50
  negative_prompt_embeds,
51
  pooled_prompt_embeds,
52
  negative_pooled_prompt_embeds,
53
- ) = pipe.encode_prompt(prompt, "cuda", True)
54
 
55
 
56
- @spaces.GPU(duration=16)
57
  def fill_image(image, model_selection):
58
  source = image["background"]
59
  mask = image["layers"][0]
@@ -103,7 +102,6 @@ with gr.Blocks(css=css) as demo:
103
  input_image = gr.ImageMask(
104
  type="pil",
105
  label="Input Image",
106
- crop_size=(1024, 1024),
107
  canvas_size=(1024, 1024),
108
  layers=False,
109
  sources=["upload"],
 
28
  model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
29
  controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
30
  )
31
+ model.to(device="cpu", dtype=torch.float16)
32
 
33
  vae = AutoencoderKL.from_pretrained(
34
  "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
 
40
  vae=vae,
41
  controlnet=model,
42
  variant="fp16",
43
+ ).to("cpu")
44
 
45
  pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
46
 
 
50
  negative_prompt_embeds,
51
  pooled_prompt_embeds,
52
  negative_pooled_prompt_embeds,
53
+ ) = pipe.encode_prompt(prompt, "cpu", True)
54
 
55
 
 
56
  def fill_image(image, model_selection):
57
  source = image["background"]
58
  mask = image["layers"][0]
 
102
  input_image = gr.ImageMask(
103
  type="pil",
104
  label="Input Image",
 
105
  canvas_size=(1024, 1024),
106
  layers=False,
107
  sources=["upload"],