|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import gradio as gr |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("MTSAIR/multi_verse_model") |
|
model = AutoModelForCausalLM.from_pretrained("MTSAIR/multi_verse_model") |
|
|
|
def greet(name): |
|
|
|
|
|
input_ids = tokenizer.encode(name, return_tensors='pt') |
|
res = model.generate(input_ids, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
generated = tokenizer.decode(res[0], skip_special_tokens=True) |
|
return generated |
|
|
|
iface = gr.Interface(fn=greet, inputs="text", outputs="text") |
|
iface.launch() |
|
|