File size: 2,097 Bytes
072aac4
 
 
 
 
c634e42
 
 
 
072aac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c634e42
 
 
072aac4
 
 
 
da191ae
072aac4
 
 
da191ae
 
5b86ab3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

# %% ModelTester.ipynb 1
from fastai.vision.all import *
import gradio as gr

# needed when model was saved/ported on windows
import platform
import pathlib

# %% ModelTester.ipynb 3
from fastai.metrics import Metric

class OrdinalRegressionMetric(Metric):
    def __init__(self):
        super().__init__()
        self.total = 0
        self.count = 0

    def accumulate(self, learn):
        # Get predictions and targets
        preds, targs = learn.pred, learn.y

        # Your custom logic to convert predictions and targets to numeric values
        preds_numeric = torch.argmax(preds, dim=1)
        targs_numeric = targs

        #print("preds_numeric: ",preds_numeric)
        #print("targs_numeric: ",targs_numeric)

        # Calculate the metric (modify this based on your specific needs)
        squared_diff = torch.sum(torch.sqrt((preds_numeric - targs_numeric)**2))

        # Normalize by the maximum possible difference
        max_diff = torch.sqrt((torch.max(targs_numeric) - torch.min(targs_numeric))**2)

        #print("squared_diff: ",squared_diff)
        #print("max_diff: ",max_diff)

        # Update the metric value
        self.total += squared_diff
        #print("self.total: ",self.total)
        self.count += max_diff
        #print("self.count: ",self.count)
    @property
    def value(self):
        if self.count == 0:
            return 0.0  # or handle this case appropriately
        #print("self.total / self.count: ", (self.total / self.count))
        # Calculate the normalized metric value
        metric_value = 1/(self.total / self.count)
        return metric_value

# %% ModelTester.ipynb 4
plt = platform.system()
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
learn = load_learner("newmodel.pk1")

# %% ModelTester.ipynb 6
categories = ("1","1-2","2","2-3","3","3-4","4","4-5","5")

def classify_image(img):
    pred, idx, probs = learn.predict(img)
    return dict(zip(categories, map(float, probs)))

# %% ModelTester.ipynb 8

intf = gr.Interface(fn=classify_image, inputs='image', outputs='label')
intf.launch(inline=False)