# %% ModelTester.ipynb 1 from fastai.vision.all import * import gradio as gr # needed when model was saved/ported on windows import platform import pathlib # %% ModelTester.ipynb 3 from fastai.metrics import Metric class OrdinalRegressionMetric(Metric): def __init__(self): super().__init__() self.total = 0 self.count = 0 def accumulate(self, learn): # Get predictions and targets preds, targs = learn.pred, learn.y # Your custom logic to convert predictions and targets to numeric values preds_numeric = torch.argmax(preds, dim=1) targs_numeric = targs #print("preds_numeric: ",preds_numeric) #print("targs_numeric: ",targs_numeric) # Calculate the metric (modify this based on your specific needs) squared_diff = torch.sum(torch.sqrt((preds_numeric - targs_numeric)**2)) # Normalize by the maximum possible difference max_diff = torch.sqrt((torch.max(targs_numeric) - torch.min(targs_numeric))**2) #print("squared_diff: ",squared_diff) #print("max_diff: ",max_diff) # Update the metric value self.total += squared_diff #print("self.total: ",self.total) self.count += max_diff #print("self.count: ",self.count) @property def value(self): if self.count == 0: return 0.0 # or handle this case appropriately #print("self.total / self.count: ", (self.total / self.count)) # Calculate the normalized metric value metric_value = 1/(self.total / self.count) return metric_value # %% ModelTester.ipynb 4 plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learn = load_learner("newmodel.pk1") # %% ModelTester.ipynb 6 categories = ("1","1-2","2","2-3","3","3-4","4","4-5","5") def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # %% ModelTester.ipynb 8 intf = gr.Interface(fn=classify_image, inputs='image', outputs='label') intf.launch(inline=False)