beercan commited on
Commit
54e8b9f
·
verified ·
1 Parent(s): 2f273cf

Create music-analyzer.livemd

Browse files
Files changed (1) hide show
  1. extra_data/music-analyzer.livemd +207 -0
extra_data/music-analyzer.livemd ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- livebook:{"app_settings":{"access_type":"private","output_type":"rich","slug":"80s-music"},"file_entries":[{"file":{"file_system_id":"local","file_system_type":"local","path":"80s_detailed.csv"},"name":"80s_detailed.csv","type":"file"}],"persist_outputs":true} -->
2
+
3
+ # 1980s Music Sentiment
4
+
5
+ ```elixir
6
+ Mix.install(
7
+ [
8
+ {:bumblebee, "~> 0.4.2"},
9
+ {:nx, "~> 0.6.1"},
10
+ {:exla, "~> 0.6.1"},
11
+ {:axon, "~> 0.6.0"},
12
+ {:kino, "~> 0.12.3"},
13
+ {:kino_explorer, "~> 0.1.18"},
14
+ {:kino_vega_lite, "~> 0.1.10"}
15
+ ],
16
+ config: [nx: [default_backend: EXLA.Backend]]
17
+ )
18
+
19
+ Nx.global_default_backend(EXLA.Backend)
20
+ ```
21
+
22
+ ## Introduction
23
+
24
+ Music of the 80s came in many flavours; rock, pop, punk, synth. In this livebook we will delve into the feelings that many of these songs evoke. To our help we have [Hugging Face](https://huggingface.co/) and its library of open source ML models.
25
+
26
+ The model we will use here is a derivative of `roberta` called [`roberta-base-go_emotions`](https://huggingface.co/SamLowe/roberta-base-go_emotions?text=White+man+came+across+the+sea%2C+He+brought+us+pain+and+misery.+He+killed+our+tribes+killed+our+creed%2C+He+took+our+game+for+his+own+need). This model comes with 28 emotion labels. We will be able to use it via [Bumblebee Text Classification](https://hexdocs.pm/bumblebee/Bumblebee.Text.html#text_classification/3).
27
+
28
+ The idea is to pass a 1980's lyric into the model and get a classification back from it.
29
+
30
+ ## Load models
31
+
32
+ ```elixir
33
+ {:ok, emotions} = Bumblebee.load_model({:hf, "SamLowe/roberta-base-go_emotions"})
34
+ {:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "SamLowe/roberta-base-go_emotions"})
35
+
36
+ :ok
37
+ ```
38
+
39
+ <!-- livebook:{"output":true} -->
40
+
41
+ ```
42
+
43
+ 07:59:01.614 [info] TfrtCpuClient created.
44
+
45
+ ```
46
+
47
+ <!-- livebook:{"output":true} -->
48
+
49
+ ```
50
+ :ok
51
+ ```
52
+
53
+ With the emotion sentiment model loaded, lets get some lyrics to analyze.
54
+
55
+ ```elixir
56
+ text_input =
57
+ Kino.Input.textarea("Text",
58
+ default:
59
+ "White man came across the sea, He brought us pain and misery. He killed our tribes killed our creed, He took our game for his own need"
60
+ )
61
+ ```
62
+
63
+ ```elixir
64
+ text = Kino.Input.read(text_input)
65
+ serving = Bumblebee.Text.text_classification(emotions, tokenizer)
66
+ Nx.Serving.run(serving, text)
67
+ ```
68
+
69
+ <!-- livebook:{"output":true} -->
70
+
71
+ ```
72
+ %{
73
+ predictions: [
74
+ %{label: "neutral", score: 0.31277623772621155},
75
+ %{label: "optimism", score: 0.23790912330150604},
76
+ %{label: "caring", score: 0.2258605808019638},
77
+ %{label: "approval", score: 0.11500591784715652},
78
+ %{label: "desire", score: 0.030266664922237396}
79
+ ]
80
+ }
81
+ ```
82
+
83
+ ### Load and parse a file
84
+
85
+ We have an attachment to this Livebook: `80s_detailed.csv`. We import it with Kino and use Kino Explorer to parse the csv into a dataframe, `df`.
86
+
87
+ ```elixir
88
+ df =
89
+ Kino.FS.file_path("80s_detailed.csv")
90
+ |> Explorer.DataFrame.from_csv!()
91
+ ```
92
+
93
+ ```elixir
94
+ analysis = fn lyric ->
95
+ %{predictions: [%{label: label} | _tail]} = Nx.Serving.run(serving, lyric)
96
+ label
97
+ end
98
+
99
+ size = Explorer.Series.size(df["lyrics"])
100
+
101
+ lyrics_list = Explorer.Series.to_list(df["lyrics"])
102
+
103
+ take_num = 10
104
+ # last_songs = lyrics_list |> Enum.slice(-take_num..-1)
105
+
106
+ analysed_list_0_10 =
107
+ lyrics_list
108
+ |> Enum.take(take_num)
109
+ |> Enum.map(fn lyric -> analysis.(lyric) end)
110
+
111
+ # |> Enum.take(take_num)
112
+
113
+ # dummy_values =
114
+ # 1..(size - take_num)
115
+ # |> Enum.map(fn _ -> nil end)
116
+
117
+ # list = dummy_values ++ analysed_list
118
+
119
+ # updated_list = Explorer.DataFrame.put(
120
+ # df,
121
+ # :emotion,
122
+ # Explorer.Series.from_list(list)
123
+ # )
124
+ ```
125
+
126
+ <!-- livebook:{"output":true} -->
127
+
128
+ ```
129
+ ["love", "desire", "neutral", "love", "neutral", "neutral", "neutral", "neutral", "curiosity",
130
+ "neutral"]
131
+ ```
132
+
133
+ ```elixir
134
+ analysed_list_121_130 =
135
+ lyrics_list
136
+ |> Enum.slice(121..130)
137
+ |> Enum.map(fn lyric -> analysis.(lyric) end)
138
+ ```
139
+
140
+ ```elixir
141
+ analysed_list_11_30 =
142
+ lyrics_list
143
+ |> Enum.slice(11..30)
144
+ |> Enum.map(fn lyric -> analysis.(lyric) end)
145
+ ```
146
+
147
+ <!-- livebook:{"output":true} -->
148
+
149
+ ```
150
+ ["love", "neutral", "love", "love", "love", "disapproval", "joy", "neutral", "love", "love",
151
+ "neutral", "love", "neutral", "neutral", "love", "love", "desire", "love", "approval", "neutral"]
152
+ ```
153
+
154
+ ```elixir
155
+ analysed_list_31_60 =
156
+ lyrics_list
157
+ |> Enum.slice(31..60)
158
+ |> Enum.map(fn lyric -> analysis.(lyric) end)
159
+ ```
160
+
161
+ <!-- livebook:{"output":true} -->
162
+
163
+ ```
164
+ ["neutral", "disapproval", "neutral", "love", "love", "neutral", "love", "neutral", "love", "love",
165
+ "neutral", "curiosity", "love", "neutral", "admiration", "neutral", "neutral", "neutral", "love",
166
+ "neutral", "neutral", "neutral", "neutral", "neutral", "neutral", "neutral", "neutral", "neutral",
167
+ "fear", "neutral"]
168
+ ```
169
+
170
+ ```elixir
171
+ analysed_list_61_90 =
172
+ lyrics_list
173
+ |> Enum.slice(61..90)
174
+ |> Enum.map(fn lyric -> analysis.(lyric) end)
175
+ ```
176
+
177
+ <!-- livebook:{"output":true} -->
178
+
179
+ ```
180
+ ["joy", "neutral", "neutral", "love", "neutral", "neutral", "sadness", "love", "love", "neutral",
181
+ "neutral", "neutral", "amusement", "confusion", "sadness", "neutral", "love", "excitement",
182
+ "neutral", "neutral", "love", "desire", "neutral", "disappointment", "desire", "approval", "love",
183
+ "neutral", "love", "sadness"]
184
+ ```
185
+
186
+ ```elixir
187
+ analysed_list_91_120 =
188
+ lyrics_list
189
+ |> Enum.slice(91..120)
190
+ |> Enum.map(fn lyric -> analysis.(lyric) end)
191
+ ```
192
+
193
+ <!-- livebook:{"output":true} -->
194
+
195
+ ```
196
+ ["love", "joy", "neutral", "neutral", "love", "love", "neutral", "neutral", "love", "neutral",
197
+ "love", "neutral", "neutral", "neutral", "neutral", "love", "neutral", "neutral", "love",
198
+ "neutral", "disapproval", "neutral", "neutral", "desire", "neutral", "neutral", "love", "optimism",
199
+ "desire", "love"]
200
+ ```
201
+
202
+ ```elixir
203
+ analysed_list_131_150 =
204
+ lyrics_list
205
+ |> Enum.slice(131..150)
206
+ |> Enum.map(fn lyric -> analysis.(lyric) end)
207
+ ```