Spaces:
Runtime error
Runtime error
File size: 1,036 Bytes
076bd8f ad54d7a 3c9f42d eb35177 3139aef 076bd8f 26ee91d 8029b4a ad54d7a 39fedb9 ad54d7a d3426a1 eb35177 14cca43 3470fd4 416769d e5113ec d3426a1 416769d ad54d7a d3426a1 ad54d7a d3426a1 ad54d7a 416769d d3426a1 076bd8f 42ae73b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from test import inference_img
from models import *
import numpy as np
from PIL import Image
device='cpu'
model = StyleMatte()
model = model.to(device)
checkpoint = f"stylematte.pth"
state_dict = torch.load(checkpoint, map_location=f'{device}')
model.load_state_dict(state_dict)
model.eval()
def predict(inp):
print("***********Inference****************")
mask = inference_img(model, inp)
inp_np = np.array(inp)
fg = np.uint8((mask[:,:,None]*inp_np))
print("***********Inference finish****************")
# print("***********MASK****************", inp_np.max(), mask.max())
fg_pil = Image.fromarray(fg)
return [mask, fg_pil]
print("MODEL LOADED")
print("************************************")
iface = gr.Interface(fn=predict,
inputs=gr.Image(type="numpy"),
outputs=[gr.Image(type="numpy"),gr.Image(type="pil", image_mode='RGBA')],
examples=["./logo.jpeg"])
print("****************Interface created******************")
iface.launch() |