File size: 5,471 Bytes
a52a7c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import cv2 as cv
import numpy as np
import gradio as gr

def apply_gaussian_blur(frame, density):
    ksize = int(density) * 2 + 1
    return cv.GaussianBlur(frame, (ksize, ksize), 0)

def apply_sharpening_filter(frame, density):
    kernel = np.array([[-1, -1, -1], [-1, 8 * density, -1], [-1, -1, -1]])
    return cv.filter2D(frame, -1, kernel)

def apply_edge_detection(frame, density):
    return cv.Canny(frame, 100, 100 * density)

def apply_invert_filter(frame, density):
    return cv.bitwise_not(frame)

def adjust_brightness_contrast(frame, density):
    alpha = 1.0 + density / 50.0
    beta = density * 2
    return cv.convertScaleAbs(frame, alpha=alpha, beta=beta)

def apply_grayscale_filter(frame, density):
    return cv.cvtColor(frame, cv.COLOR_BGR2GRAY)

def apply_sepia_filter(frame, density):
    sepia_filter = np.array([[0.272 * density, 0.534 * density, 0.131 * density],
                             [0.349 * density, 0.686 * density, 0.168 * density],
                             [0.393 * density, 0.769 * density, 0.189 * density]])
    return cv.transform(frame, sepia_filter)

def apply_sketch_filter(frame, density):
    gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    inv = cv.bitwise_not(gray)
    blur = cv.GaussianBlur(inv, (21, 21), 0)
    sketch = cv.divide(gray, 255 - blur, scale=256)
    return cv.multiply(sketch, density)

def apply_cartoon_filter(frame, density):
    gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    blur = cv.medianBlur(gray, 7)
    edges = cv.adaptiveThreshold(blur, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 9, 10)
    color = cv.bilateralFilter(frame, 9, 300, 300)
    cartoon = cv.bitwise_and(color, color, mask=edges)
    return cv.multiply(cartoon, density)

def apply_pixelate_filter(frame, density):
    pixel_size = int(density) + 1
    h, w = frame.shape[:2]
    temp = cv.resize(frame, (w // pixel_size, h // pixel_size), interpolation=cv.INTER_LINEAR)
    return cv.resize(temp, (w, h), interpolation=cv.INTER_NEAREST)

def apply_emboss_filter(frame, density):
    kernel = np.array([[-2, -1, 0], [-1, 1 * density, 1], [0, 1, 2]])
    return cv.filter2D(frame, -1, kernel)

def apply_brightness_contrast_adjustment(frame, density):
    return adjust_brightness_contrast(frame, density)

def apply_sepia_tone(frame, density):
    return apply_sepia_filter(frame, density)


def apply_filter(input_image, filter_type, density):

    frame = np.array(input_image)

    if filter_type == "Gaussian Blur":
        result = apply_gaussian_blur(frame, density)
    elif filter_type == "Sharpen":
        result = apply_sharpening_filter(frame, density)
    elif filter_type == "Edge Detection":
        result = apply_edge_detection(frame, density)
    elif filter_type == "Invert":
        result = apply_invert_filter(frame, density)
    elif filter_type == "Brightness":
        result = adjust_brightness_contrast(frame, density)
    elif filter_type == "GrayScale":
        result = apply_grayscale_filter(frame, density)
    elif filter_type == "Sepia":
        result = apply_sepia_filter(frame, density)
    elif filter_type == "Sketch":
        result = apply_sketch_filter(frame, density)
    elif filter_type == "Cartoon":
        result = apply_cartoon_filter(frame, density)
    elif filter_type == "Pixelate":
        result = apply_pixelate_filter(frame, density)
    elif filter_type == "Emboss":
        result = apply_emboss_filter(frame, density)
    elif filter_type == "Brightness/Contrast":
        result = apply_brightness_contrast_adjustment(frame, density)
    elif filter_type == "Sepia Tone":
        result = apply_sepia_tone(frame, density)
    else:
        result = frame

    return result

with gr.Blocks(css="""
    #filter-dropdown {
        width: 300px;
        margin: 0 auto;
    }
    #apply-button {
        background-color: #8B4513;
        color: white;
        font-weight: bold;
        margin-top: 20px;
    }
    #apply-button:hover {
        background-color: #8B4513;
    }
    #input-image, #output-image {
        width: 100%;
        border-radius: 10px;
    }
    h1 {
        text-align: center;
        color: #8B4513;
    }
    p {
        text-align: center;
        font-size: 20px;
    }
""") as demo:

    gr.Markdown("""
        <h1>🖼️ Image Filter Application  🖼️</h1>
        <p>Select a filter and apply it to your image :) Enjoy!</p>
    """)

    with gr.Row():
        with gr.Column():

            filter_type = gr.Radio(
                label="Choose a filter:",
                choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness", "GrayScale", "Sepia", "Sketch", "Cartoon", "Pixelate", "Emboss", "Brightness/Contrast", "Sepia Tone"],
                value="Gaussian Blur",
                elem_id="filter-radio"
            )

            density_slider = gr.Slider(
                minimum=1,
                maximum=5,
                step=0.1,
                label="Filter Intensity (Density)",
                value=3,
                elem_id="density-slider"
            )

            input_image = gr.Image(label="Upload Image", elem_id="input-image")

            apply_button = gr.Button("Apply Filter", elem_id="apply-button")

        with gr.Column():
            output_image = gr.Image(label="Filtered Image", elem_id="output-image")

    apply_button.click(fn=apply_filter, inputs=[input_image, filter_type, density_slider], outputs=output_image)

demo.launch(share=True)